
Ruling the Unruly: Designing Effective, Low-Noise Network
Intrusion Detection Rules for Security Operations Centers

Koen T. W. Teuwen

k.t.w.teuwen@tue.nl

Eindhoven University of Technology

Eindhoven, The Netherlands

Tom Mulders

t.r.j.mulders@tue.nl

Eindhoven University of Technology

Eindhoven, The Netherlands

Emmanuele Zambon

e.zambon.n.mazzocato@tue.nl

Eindhoven University of Technology

Eindhoven, The Netherlands

Luca Allodi

l.allodi@tue.nl

Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract
Many Security Operations Centers (SOCs) today still heavily rely

on signature-based Network Intrusion Detection Systems (NIDS)

such as Suricata. The specificity of intrusion detection rules and

the coverage provided by rulesets are common concerns within

the professional community surrounding SOCs, which impact the

effectiveness of automated alert post-processing approaches. We

postulate a better understanding of factors influencing the quality

of rules can help address current SOC issues. In this paper, we char-

acterize the rules in use at a collaborating commercial (managed)

SOC serving customers in sectors including education and IT man-

agement. During this process, we discover six relevant design prin-

ciples, which we consolidate through interviews with experienced

rule designers at the SOC. We then validate our design principles by

quantitatively assessing their effect on rule specificity. We find that

several of these design considerations significantly impact unnec-

essary workload caused by rules. For instance, rules that leverage

proxies for detection, and rules that do not employ alert throttling

or do not distinguish (un)successful malicious actions, cause signifi-

cantly more workload for SOC analysts. Moreover, rules that match

a generalized characteristic to detect malicious behavior, which is

believed to increase coverage, also significantly increase workload,

suggesting a tradeoff must be struck between rule specificity and

coverage. We show that these design principles can be applied suc-

cessfully at a SOC to reduce workload whilst maintaining coverage

despite the prevalence of violations of the principles.

CCS Concepts
• Security and privacy→ Intrusion detection systems;Network
security.

Keywords
Security Operations Center (SOC), Network Intrusion Detection

System (NIDS), Network Intrusion Detection Rules

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1410-8/25/08

https://doi.org/10.1145/3708821.3710823

ACM Reference Format:
Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi.

2025. Ruling the Unruly: Designing Effective, Low-Noise Network Intrusion

Detection Rules for Security Operations Centers. In ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’25), August 25–29,
2025, Hanoi, Vietnam. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3708821.3710823

1 Introduction
Security Operations Centers (SOCs) are an important part of or-

ganizations’ security strategies to establish defense-in-depth and

increase their digital resiliency. SOCs typically operate using a com-

bination of automated detectors such as Host Intrusion Detection

Systems (HIDS) or Network IntrusionDetection Systems (NIDS), fol-

lowed bymanual analysis of the security events collected from these

tools. A NIDS commonly employed in SOCs is Suricata [27, 42, 43],

which is a rule-based intrusion detection system.

Modern SOCs suffer from several issues, and academic research is

not always aligned with the problems SOC employees experience in

practice [19, 45]. For example, companies are unable to keep upwith

changes in the threat landscape due to a lack of coverage [19, 45].

Other research work [2, 42, 43] suggests a lack of specificity is a big-

ger concern, causing analysts a tremendous amount of unnecessary

workload. Tomitigate theworkload imposed on SOC analysts by the

volume of incoming alerts requiring investigation, SOCs can employ

various automated alert post-processing tools. These include alert

classification [9], prioritization [44], and aggregation [29] methods,

which are often based on Machine Learning (ML). As pointed out

by [42], the attempts to use ML to improve SOC operations are “end

of pipe” solutions designed to take large quantities of alerts as input

in order to produce informative and actionable output that SOC

analysts can use, but often fail to achieve this goal due to poor input

quality. These approaches would greatly benefit from improving

the quality of the alerts, and thus the rules generating them.

We postulate a better understanding of factors influencing the

quality of rules can help address current SOC issues. Although

previous work has focused on characterizing rulesets and their

quality [42, 43], to the best of our knowledge, no characterization

of the rules contained therein has been presented yet, and no action-

able guideline has been built to facilitate the design of quality rules.

Even if a relation between rule coverage and specificity is known to

exist [42], no academic literature explores the relation between rule

design principles and the coverage or specificity of the designed

https://orcid.org/0000-0002-6490-4768
https://orcid.org/0009-0004-4387-3458
https://orcid.org/0000-0002-8079-4087
https://orcid.org/0000-0003-1600-0868
https://doi.org/10.1145/3708821.3710823
https://doi.org/10.1145/3708821.3710823
https://doi.org/10.1145/3708821.3710823

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

rules. In this paper, we characterize the rules in use at a collabo-

rating commercial (managed) SOC serving customers in sectors

including education and IT management. Specifically, we leverage

the alerts generated by Suricata sensors deployed at two of the

largest SOC customers, together with incident reports, to character-

ize the rules contributing to the detection of incidents (good rules)

and the rules responsible for generating mainly “noise” (high-noise

rules). Despite originally assuming implementation-level character-

istics (e.g., rule detection and metadata options) would be able to

explain why certain rules are good and others are high-noise, we

find that implementation-level features merely serve as a proxy for

higher-level design characteristics. During this process, we discover

several relevant principles at the design level, which we consolidate

through interviews with experienced rule designers at the SOC. We

then validate our design principles by quantitatively assessing their

effect on rule specificity. We make the following contributions:

• We present the first analysis of the quality of NIDS rules (as

opposed to rulesets) deployed at a commercial SOC. The analysis

is based on a ruleset comprising 290𝑘 unique rule revisions and

on the 30𝑀 alerts generated by these rules during 11 months of

deployment at two SOC customer networks.

• We find that rules leveraging atomic Indicators of Compromise

(IoC) contribute the most to incident detection and a lack of cover-

age is not always considered a culprit. Recently introduced rules

and legacy rules play an important role in providing coverage.

• A minority of rules is responsible for the majority of alerts,

whereas a vast majority of rules never trigger. After examin-

ing high-noise rules, we found that they can be improved within

the possibilities offered by the underlying detection technology.

• Based on our observations from the collected data, complemented

by expert interviews, we formulate six design principles to im-

prove rule specificity and coverage.

• Utilizing regression analysis, we find that several of the design

principles have a significant impact on rule specificity. Interest-

ingly, we find that one of the principles to improve coverage

negatively affects specificity, suggesting a specificity and cover-

age must be balanced during rule design.

• We develop a tool
1
to identify rules deviating from the principles

and find that a majority of the acquired (open and commercial)

rules from the collaborating SOC likely uses proxies for detection,

and fails to utilize exceptions and alert throttling.

The rest of this paper is organized as follows. We provide back-

ground information and discuss related work in Section 2. In Sec-

tion 3, we discuss the methodology for our research. Thereafter,

we present an exploration of the data we gathered, together with

our rule quality findings in Section 4. In Section 5, we present our

rule design principles and analyze their effect on rule coverage

and specificity. In Section 6, we show how the design principles

can be operationalized in the context of a SOC. We discuss the

implications of our results in Section 7 along with the limitations

of our empirical analyses. Section 8 concludes this work.

1
The code will be released as open source software under EUPL 1.2.

2 Background and related work
2.1 Security Operations & Intrusion Detection
A Security Operations Center (SOC) can be defined as a (part of) an

organization that is responsible for monitoring assets to detect and

respond to security incidents [45]. SOCs can be in-house or man-

aged. Managed SOCs are external to the monitored organization

and typically provide services to a number of other organizations.

Typically, SOCs deploy network monitoring or host monitoring so-

lutions to gain insight into their assets. Although SOCs may employ

Host-based Intrusion Detection Systems (HIDS), we focus on Network-
based Intrusion Detection Systems (NIDS) in the remainder of this

work. To process the vast amount of monitored data streams, in-
trusion detection systems are applied to detect undesirable behavior.

Intrusion detection systems can be divided into misuse-based de-

tection systems and anomaly detection systems [20]. Misuse-based
detection systems use knowledge of the characteristics of malicious

behavior to perform detection, while anomaly-based detection uses

a baseline of normal behavior to detect deviations. Suricata is an

example of a misuse-based NIDS and requires a ruleset consisting
of rules implementing signatures describing potential malicious be-

havior. In addition to the logs produced by these intrusion detection

systems, more generic Security Monitoring Systems (NSM) exist that
can be used to describe the monitored data streams using key fea-

tures and characteristics, such as Zeek [32]. In addition, Tactics and

Techniques from the MITRE taxonomy [8] are often used to distin-

guish between different actions that an attacker may perform. Rules

may be designed to detect instances of specific ATT&CK techniques.

In the remainder of this paper, alert data refers to the logs gener-
ated by intrusion detection systems such as Suricata. Log data refers
to data describing other logs produced by tools not used to detect

intrusions and, hence, also describes normal behavior. Analysts

can leverage both alert and log data to manually detect security

incidents with the support of data processing tools such as Security

Information and Event Management tools (SIEM), which provide

visualizations and can be used to correlate different logs. When the

outcome of an alert investigation is escalated to a customer, we

say an incident has been detected. A SOC typically documents the

incident in an incident report describing the nature of the incident.

Even if not all incident reports may correspond to security inci-

dents, they are necessary to trigger further investigation, such as

OS integrity inspection, after non-conclusive investigations based

on evidence extracted from network traffic only.

2.2 Rulesets & Rule Engineering
NIDS rules examined in this work are written according to the Suri-

cata rule syntax [28]. Each rule begins with a header specifying the
action, and protocol and direction of the inspected network packets.

Each rule can have additional options within the body of the rule.

The most important options are the detection options. They specify

which buffer is matched against which string, bytes, or regular

expression. Content modifiers exist to change how and where the

content is matched. A rule may combine positive and negative con-

tent matches and even specify distance between content matches.

Additionally, the flow keyword enables restricting the inspection

of packets sent only by servers or by clients. Notably, Suricata also

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

includes options to set and check bits within and across connec-

tions using keywords such as flowbits and xbits, enabling stateful
detection. Additionally, rules can use threshold to limit how often

and when they trigger. Non-detection options, such as metadata and
classtype, also exist to aid interpretation of generated alerts. Figure 9,
contained in Appendix A, shows an example of a rule and highlights

the aforementioned different syntax features. The rule engineermay

use arbitrary combinations of these syntax features to define rules

as specific as possible (i.e., triggering only when a successful attack

is present) while maintaining coverage of attack variants (i.e., avoid-

ing overfitting to specific instances of that attack). Several broad cat-

egories of rules can be distinguished [15], including those leverag-

ing Indicators of Compromise (IoCs), those leveraging information

on known exploits, those leveraging information about vulnerable

devices, and those leveraging information about rare deviations

from common protocols. Rules can also be grouped according to

the type of malicious action they detect or the considered protocol.

The evolution of rules and rules, their raising of alerts, and their

relation to incidents have been studied in the extant literature [43].

Notable findings include that a minority of the rules is responsible

for the majority of the alerts, only a fraction of the alerts are investi-

gated, and most rules never receive updates on the detection option

but only on metadata (which has no impact on triggering condi-

tions). Previous research has also suggested that about one-fourth

of all raised alerts correspond to unsuccessful attack attempts, and

almost half correspond to benign triggers (i.e., an alert that is fired

based on the correct characteristic, but that can be explained by an

acceptable behavior) [47]. Building upon these works, our aim is to

explain which rules are responsible for the vast majority of unin-

teresting alerts and which rule design principles play a role in that.

Other researchers conducted interviews with professionals from

various SOCs to better understand the workflows and decision-

making of SOCs [42]. Additionally, they found that, while it is

common to procure community and commercial rulesets, SOCs tune

these rulesets by disabling rules. They also state that feedback loops

to report False Positives (FPs) are not common practice. They found

that rule specificity, especially, but also rule(set) coverage, are key

considerations in SOCs, which must be balanced together. Our work

aims to fill the gap on the factors that contribute to rule specificity.

Other research also reports on SOC processes following inter-

views and describes a SOC analyst who blamed a rule engineer for

developing a high-noise rule that the analyst had to deal with [40].

A related study on FPs at SOCs concluded that most FPs correspond

to benign behavior [2]. Regarding rule quality, the community sur-

rounding Suricata has made several efforts to develop guidelines

to promote rule quality, although these mostly revolve around the

syntax and structure of rules [38, 41].

3 Methodology
3.1 Data Provisioning
3.1.1 Monitored organizations. For the analysis conducted in this

paper, data was gathered from a managed SOC. The SOC monitors

network interactions with approximately 100𝑘 − 200𝑘 IP addresses,

collectively responsible for approximately 1− 10𝑀 connections per

day. As part of their Service Level Agreement (SLA), each client

organization has set a different scope for detection and monitoring.

Some clients are only interested in monitoring key assets such

as servers, while others value monitoring user devices such as

laptops. Finally, it should be noted the collaborating SOC has a

very strict definition of an ‘incident’, i.e., an event indicating that at

least one attack step against a customer asset was successful. Most

unsuccessful attacks are not reported as incidents to customers.

For our evaluation, we obtain data collected since June 2022

on two organizations monitored by the SOC. These clients differ

in terms of organization size, sector, and maturity level of their

security management. One organization is a large educational in-

stitution with over 50𝑘 internal IP addresses responsible for over

28𝑀 alerts. The second organization is an medium-sized enterprise

IT service company with slightly less than 5𝑘 internal IP addresses

responsible for almost 500𝑘 alerts. For the first organization, the sen-

sor setup primarily monitors crucial assets, including DNS servers,

causing over 90% of the traffic to be DNS connections.

3.1.2 Alert data. The SOC uses common tools such as Zeek and

Suricata to automatically generate log and alert data. The ruleset

used by the SOC is gathered from various public and commercial

sources in addition to their in-house developed signatures. An exam-

ple of a public ruleset is Proofpoint’s ETOPEN ruleset [16]. The SOC

ruleset is updated daily to ensure that detection capabilities are in

place to deal with emerging threats. Moreover, following a process

referred to as tuning [42], certain rules are suppressed from the rule-

set because they were considered to produce too many FPs when

weighted against the increased detection capabilities they may offer.

Tomaintain external validity, we include rules originally suppressed

in the SOC in our analysis. The SOC has developed a mapping of

Suricata alerts to MITRE ATT&CK [8] techniques to improve the

effectiveness of analysts during their investigation. ∼ 26% of the

inspected rules cannot be unambiguously mapped to a technique.

3.1.3 Rule dataset derivation from alert and incident data. Based
on the daily alert data, we extracted statistics that describe an orga-

nization on each day. These aggregate statistics do not contain any

personal information about users. In addition, from the raw alert

data, we extract a dataset containing all rule revisions that triggered

an alert at the SOC and merge them with a snapshot of the ruleset.

The collection of different revisions of the triggered rules allows us

to evaluate the specificity of rule variations. If the investigation of

an alert led to an incident report, the alert was deemed sufficiently

relevant to be escalated to the client organization, and therefore can

be considered a True Positive according to the SOC. To determine

how many incidents were detected by each rule, we (through the

collaborating SOC) automatically parse incident reports (which

follow a template) using regular expressions to extract incident

identifiers such as the date of the incident and the involved hosts.

To check how many incidents were detected by a rule, the SOC

then correlates raised alerts with incident identifiers.

3.2 Data Description
To evaluate rule specificity and coverage, we need a rich dataset de-

scribing how much noise rules cause and how many incidents they

detect, which we obtain by combining data from several sources.

After aggregation and anonymization of the data, we obtain three

datasets whose shared key statistics are summarized below and in

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

Table 6 contained in Appendix B. Together, the datasets describe ∼
30𝑀 alerts over a period of 390 days since June 2022 forwhich data is

available. Over this period, we do not observe any significant change

in the overall distribution of the data. The first dataset, derived from

snapshots of the ruleset and the alert data, contains ∼ 290𝑘 rule

revisions used by the SOC over time. We consider rule revisions in

isolation, even if some triggering rules had more than one revision,

as we find that most of the observed rule updates correspond to

metadata updates, in line with [43]. This dataset will be enriched

with using the other datasets as described in Section 3.2.1, resulting

in rich data for triggered rules. The second dataset, derived from the

alert data, describes which rules triggered how often on which day.

The third dataset, derived from incident data covering 42 incidents

during the same period, describes when incidents occurred and

which rules contributed to the detection of those incidents. The

SOC has indicated, based on the interactions with their customers,

that they did not fail to report any security incident within their

monitoring scope, suggesting there are no False Negatives in the

incident data. The data provisioning is summarized in Figure 1.

3.2.1 Rule metrics. As rule specificity is considered the key to rule

adoption [42], we focus on the amount of unnecessary workload per
day, which corresponds to the average number of FPs triggered per

day, as a metric for rule quality. This metric is computed separately

for each revision of a rule. First, we determine duringwhich period a

rule has been active. An introduction date is determined by inspect-

ing metadata fields such as updated_at. Similarly, we look at the

introduction dates of newer revisions of the same rule to determine a

termination date for the revised rules. The introduction and termina-

tion dates are capped at the boundaries of the data collection period.

To compute the amount of unnecessary workload per day, we count

the number of alerts raised by a rule revision, subtract the number

of detected incidents, and then divide it by the number of days for

Incident
reports

Rule
Extraction

Suricata
Ruleset

Snapshot

Raw alert
data

Rule
CollectionRevisions of

triggered rules

Streaming
Count

Statistics
Alert

Dataset

Alert count per day
by rule

Regex
Extraction

Correlation

Incident
Identifiers

IP addresses involved in
and dates of incidents

Incident
Dataset

Rules detecting
incidents

Enrichment

Rule
Dataset

Unnecessary workload metrics

Figure 1: An information flow diagram depicting the process-
ing steps performed to derive the three datasets describing
rules, alerts, and incidents from the raw data.

which a revision has been active. The resulting metric is also sensi-

tive to rule design choices, including whether and how aggregation

or throttling is performed.We refrain from defining ametric describ-

ing the number of missed attacks since no rule is expected to detect

every incident, and coverage is provided by the ruleset as a whole.

3.3 Design Principles Derivation
The design principles presented in Section 5 are derived through

a systematic examination of rules associated with high workload,

hence lacking specificity, and validated through a series of one-

on-one interviews with two domain experts. An overview of how

the different parts of the methodology are related is presented in

Figure 2, and the individual steps are explained hereafter.

3.3.1 Examination of highest workload rules. To derive the initial

set of design principles, we follow a process akin to ‘thematic satu-

ration’ whereby manual inspection and coding of items of interest

continues until no new ‘codes’ or ‘themes’ emerge [34]. We select

three common techniques from the three most common tactics

(based on the triggered rules) to obtain a set of design principles

that is generally applicable. Specifically, we focus on MITRE Tech-

niques [8] T1595 (Active Scanning), T1190 (Exploit Public-Facing

Application), and T1071 (Application Layer Protocol). Following

the thematic saturation approach, the main researcher inspected

high-noise rules and derived several ‘improvement points’ that, in

his opinion, could have increased the specificity of the rule given

the threat it detected. Those improvement points are then discussed

with the other authors, leveraging 15 years of intrusion detection

experience in industry and academia. The process was stopped

when 10 consecutive rule inspections for that technique group did

not lead to any new ‘improvement points’ to add to the set (i.e., the

set reached saturation). The overall process required the inspection

of 54 rules. The obtained ‘improvement points’ are then categorized

and grouped to derive generally applicable rule design principles.

3.3.2 Interviews. These proposed rule design principles were ini-

tially validated through a series of one-on-one interviews with two

domain experts; one is a security researcher and one is a senior

Tier-2 analyst at the SOC, with, respectively, 12 and 4 years of

experience with rule engineering. The interviews were conducted

independently with each expert. The focus of the interviews is

to ensure the completeness and correctness of the derived design

Inspection of High-Noise Rules

Reconnaissance Initial Access Command &
Control

Improvement
Points

Design Principles

Interviews

Working Set of
Design Principles

Regression Analysis
Effects on
Specificity

Improvement
Points

Improvement
Points

Design PrinciplesDesign Principles

Consensus?
Yes

No

Expert
feedback

Final Design
Principles

Figure 2: An overview of how the different parts of the
methodology relate.

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

principles. During each conducted interview, we iterate over the

posed design principles to check for agreement with the principle,

and then ask the expert whether any other consideration should be

added. The interviews were repeated until every proposed consid-

eration was reviewed and agreed upon by both domain experts. In

total, only three interviews were necessary to reach full agreement.

3.4 Effect Size Evaluation
We quantitatively assess the effect on unnecessary workload as de-

scribed in Section 3.2.1 of (non-)conformity with design principles

in a rule. To do so, we label a selection of rules and perform a set

of statistical tests to estimate effect size. For regression, we identify

groups of rules that are similar in terms of the type of threat they

aim to detect but differ in their design. This allows us to contrast

workload generated by rules with and without specific design prin-

ciples in place, while controlling confounding factors related to,

for example, how common specific network events or traffic over a

specific protocol are. Since we aim at identifying factors influencing

unnecessary workload generated by rules, high-noise rules are not

excluded from the comparison groups unless the noise generated

by a rule is considered to be specific to an environment and cannot

be expected to be present in most similar network environments. In

forming groups, we are limited by rules that cover threats that could

be observable given the sensor setup, the underlying monitored

network, and the corresponding threat landscape. We find that over

70% of all rules in the ruleset and over 50% of the triggered rules

operate on the http protocol. Therefore, all groups are constrained

to rules that perform detection on top of the http protocol, which

is representative of the majority of rules. To ensure homogeneous

groups, we select them based on MITRE Techniques [8] and only

consider groups based on techniques with more than 15 rules. We

label each rule with the implemented design principles.

One group of rules consists of 21 reconnaissance rules detecting

technique T1595 (Active Scanning). Note that the rule discussed

in Section 4.3.3, which may detect outbound scans initiated by

an infected host, was excluded from this group due to its high

environment-specific noise. Another group consists of 9 Initial Ac-

cess rules detecting behavior in relation to Log4j [11] exploitation,

comprising rules including the string Log4j in the alert message. The

Log4j group is especially interesting since the SOC uses rules from

multiple distinct sources with different designs to maximize cov-

erage due to the associated high risk, which enables a comparison

of the effects of different designs. We complement the Log4j group

with another group covering the same technique but using different

procedures, which consists of 81 rules detecting technique T1190

(Exploit Public-Facing Application), and excludes all rules from the

Log4j group. Further Initial Access groups consist of 53 rules detect-

ing technique T1055 (Process Injection) and 19 rules detecting T1189

(Drive-by-Compromise). The last group consists of 19 Command &

Control rules, which are selected based on their technique, T1071

(Application Layer Protocol). Together, the groups include 182 rules.

To evaluate the effect size, we rely on a batch of robust linear

regressions using statsmodels [31, 39], estimating the effect of any

given design principle on the expected daily workload. We do not

regress over design principles for which a group has less than two

rules (not) adhering to that design principle. Following common

practice [30], we assert that the Variance Inflation Factors (VIF)

do not exceed 20 for all coefficients before performing multiple

regression. We report statistical significance for each estimated

effect size from a batch of t-tests; p-values lower than 0.05 are

considered significant. In addition, we use the Kolmogorov-Smirnov

Test (KS test) as a goodness-of-fit test to better understand how

much variance can be explained by the model [22]. Rejection of

the null hypothesis (𝐻0) of a KS-test implies poor fit. The KS test is

chosen over the usual 𝑅2 due to its robustness against outliers.

3.5 Ethical Considerations
This research was carried out with ethical approval from our institu-

tion’s ethical review board under approval number ERB2024MCS01.

We gained explicit and informed consent from all subjects partici-

pating in the interviews, and subjects were assured the study would

not affect their working conditions in any way. Sensitive log, alert,

and incident data have, where relevant, been aggregated and/or

anonymized at the SOC, such that researchers cannot use those

data to identify systems or individual people to whom the data

relates. The interviewees explicitly consented to their participation

in this research after receiving sufficient information on the topic

and remain anonymous. Concerning the evasion of detection, we

have taken care not to discuss potential evasion strategies relating

to vulnerabilities that are recent and still likely to be exploitable.

4 Data Exploration
Section 4.1 describes at a high level the ruleset and the typical rules

contained. Subsequently, Section 4.2 provides an overview of the re-

lation between rules, alerts, and incidents, highlighting which types

of rules contribute to detecting incidents. Lastly, Section 4.3 presents

three high-noise rules to exemplify the design principle derivation.

4.1 Ruleset Overview & Typical rules
Based on our initial interactions with the SOC, we gained a better

understanding of what SOC managers and analysts demand from

intrusion detection rules and the context in which these operate.

According to a SOC representative, some rules have such a high

false positive rate that they are considered to be informational and
only used for threat hunting or as supporting evidence for an inves-

tigation initiated based on another alert. The ruleset used consists

of approximately 290𝑘 unique rules, of which approximately 9𝑘 are

considered by the SOC to be informational. Since non-informational

alerts are responsible for the majority of the analyst workload and

detection coverage, we focus on non-informational rules in the re-

mainder of this work. Among these, 791 rules were triggered during

the period for which we have data. Hence, a significant portion of

the ruleset never triggers. Figure 3 shows the distribution of unnec-

essary workload generated by triggered non-informational rules

and highlights the workload generated by rules that contribute to

the detection of incidents using markers on the x-axis. The figure
suggests that a minority of rules causes significant noise while

low-noise rules can effectively contribute to detecting incidents.

4.2 Incident Detection by Rules
Although the SOC has only reported 42 incidents during the 390

days for which we have full data, they had accumulated several

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

Table 1: A breakdown of rules contributing to the detection
of incidents by rule category.

Total No. Detected Incidents 42

Rule Category No. Detected Incidents

Content 17

Threshold 7

DNS 32

IP 4

Other 3

millions of alerts over the same period. We find that the majority

of alerts are not interesting for SOC analysts to investigate. During

our analysis of Figure 3, we found that approximately 80% of the

triggered rules raise less than a single alert per day. However, a

very small fraction of the rules is responsible for the majority of

unnecessary workload that causes alert fatigue.

Table 1 shows a breakdown of the categories of rules that con-

tribute to the detection of incidents. Note that some incidents are

detected by multiple categories of rules, causing the sum of inci-

dents over the different categories to be larger than the total number

of incidents. Over 75% of incidents are detected through the usage

of rules that detect specific domain names as Indicators of Com-

promise (IoC) in a DNS request. The low detection rate for rules

leveraging the content of packets opposite to atomic IoCs may be

attributed to the sensor setup of the largest customer of the SOC,

where DNS servers are monitored, but not inbound/outbound traf-

fic of less critical hosts within the monitoring scope. Therefore, we

refrain from suggesting content-based detection strategies beyond

atomic IoC are ineffective in detecting incidents.

Next, we turn to the relation between rule age and coverage. 7

incidents out of 42 incidents for which we have data were detected

by recently introduced rules (1-7 days old). For 4 of these incidents,

such a recently introduced rule is the only rule that contributes

to the detection of that incident. This suggests that it is important

for SOC managers to ensure regular updates of the employed rule-

set. Furthermore, 10 incidents were only detected by legacy rules,

which were last updated more than 2 years before the incident and

of which the oldest was not updated for over 9 years. Although

some of these rules correspond to generic threats such as network

scans, others correspond to C2 traffic from older malware such as

Zeus [26] (see Figure 4).

This rule is a good example of a specific rule that still achieves

general coverage. Even if this rule was last updated in 2014, it barely

caused any workload and has contributed to the detection of inci-

dents. This legacy rule detects domains corresponding to the Zeus

10 2 10 1 100 101 102 103

Unnecessary Workload

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Figure 3: An Empirical Cumulative Distribution Function
Plot for the unnecessary workload (x-axis, log-scale) gener-
ated by triggered non-informational rules. The markers on
the x-axis represent rules contributing to detecting incidents.

botnet DGA algorithm [26] and potentially other types of malware

using DGA strategies. The exact DGA domain has been generalized

to a structure and is matched at variable offset using the pcre feature
from Suricata. Leveraging the incident reports, we establish the rule

did not detect a Zeus-related infection but did detect another type

of infection employing DGA techniques similar to Zeus’s. To reduce

FPs, alert throttling is applied in a way that alerts are only raised

after several observations, and only one alert is generated every

two minutes. Repetitive queries to DGA domains would indicate an

internal host has already been successfully infected with malware.

1 alert udp any 53 -> $HOME_NET any (

2 msg:"ET MALWARE Possible Zeus GameOver/FluBot Related DGA NXDOMAIN

Responses ";

3 byte_test :1,&,128,2; byte_test :1,&,1,3; byte_test :1,&,2,3;

4 content :"|00 01 00 00 00 01|"; offset :4; depth :6;

5 pcre :"/^..[\x0d -\x20][a-z]{13 ,32}(?:\ x03(?:biz|com|net|org)|\

x04info |\x02ru)\x00\x00\x01\x00\x01/Rs";

6 threshold:type both , track by_dst , count 12, seconds 120;)

Figure 4: Shortened rule detecting Zeus DGA NXDOMAIN
responses (sid: 2018316)

4.3 Inspection of High-Noise Rules
To better understand what distinguishes good rules from high-

noise rules, we investigate a variety of rules known to cause mass

FPs in the monitored environments following the methodology

described in Section 3.3. Looking at (54 of) these high-noise rules

and using our knowledge of intrusion detection and Suricata [27]

in particular, we reason about which alternate design choices could

have improved these rules. To exemplify this process, we cover three

rules and areas in which they can be improved. These rules were

chosen as an example because they allow us to highlight all design

principles derived from this process and to cover all three different

MITRE Tactics [8] we investigated. For brevity, we remove fields not

affecting specificity or coverage, such as metadata and fast_pattern.

1 alert http $EXTERNAL_NET any -> $HOME_NET any (

2 msg:"ET SCAN OpenVAS User -Agent Inbound ";

3 flow:established ,to_server;

4 http.user_agent; content :" OpenVAS ";)

Figure 5: Shortened rule detecting inbound OpenVAS UA (sid:
2012726)
4.3.1 Reconnaissance. The rule shown in Figure 5 detects the Open-
VAS HTTP User-Agent (UA) in inbound traffic. OpenVAS is an open-

source vulnerability scanning tool [1] and has legitimate use cases

for penetration testers who must assess the attack surface of organi-

zations. However, these tools are also abused bymalicious actors [21,

35] to find vulnerable systems to exploit. Internet-connected sys-

tems are likely to be periodically scanned by infected hosts [46], and

for certain network environments monitored by the SOC described

in Section 3.1, this will result in many alerts. Due to the broadness of

this rule, generated alerts are not very actionable since it is unclear

what vulnerability was scanned for. More pressingly, given an alert,

it is unclear whether an exploitable vulnerability was detected.

We envision two potential avenues for improving this rule. A first

improvement opportunity for this rule is to make it more specific

with respect to the type of vulnerability scanned for and to include

checks on the server response to assess whether a vulnerability

was detected or not. This approach helps distinguish between scan

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

attempts from which nothing of interest was learned and successful

scans from which adversaries may proceed to exploit a system. If

coverage is preferred over or desired in conjunction with specificity,

it is possible to apply alert throttling to the rule, effectively limiting

the number of alerts to one per scanner within a certain timeframe.

By correlating an alert generated by the alert throttled rule with

other network logs, such as Zeek logs, an analyst can still determine

exactly which hosts and services were scanned.

1 alert http any any -> $HTTP_SERVERS any (

2 msg:"ET WEB_SERVER ColdFusion administrator access ";

3 flow:established ,to_server;

4 http.method; content :"GET"; nocase;

5 http.uri; content :"/ CFIDE/administrator "; nocase ;)

Figure 6: Shortened rule detecting ColdFusion unauthorized
administrator access attempts (sid: 2016184)
4.3.2 Initial Access. The rule highlighted in Figure 6 aims at detect-

ing unauthorized administrative access to the Adobe ColdFusion

software by detecting inbound HTTP requests to one of the admin

URIs. Based on our conversations with the SOC regarding this rule,

we conclude that the majority of FPs caused by this alert involve

systems that do not run ColdFusion software and therefore cannot

be vulnerable. Moreover, we note that even if a system runs the

ColdFusion software, it is unclear from alerts generated by this rule

whether unauthorized access was granted or denied. The rule also

lacks generalization capabilities, considering that it only detects

one of the several URIs related to the vulnerability [5, 14].

To generalize the rule to cover other URIs related to the same

group of CVEs mentioned in the security advisory [14], one could

reduce the first content match to just the /CFIDE/ substring to re-

duce the need for a second rule
2
. Using a regular expression, one

could then match whether one of the three specific URIs mentioned

in the advisory is requested. A more pressing improvement is that

there appears to be a clear way to detect whether a system is vul-

nerable based on the response of the server [25]. An HTTP 200

status code suggests that access was granted, and hence, the system

appears to be vulnerable according to the Metasploit code. Similarly

to the approach proposed in Section 4.3.1, the alerts generated by

this detection method could be limited to the network connections

in which not just an attempt was made, but to the connections in

which unauthorized access was successfully acquired.

1 alert http $HOME_NET any -> $EXTERNAL_NET any (

2 msg:"ET USER_AGENTS Go HTTP Client User -Agent";

3 flow:established ,to_server;

4 http.user_agent; content :"Go-http -client "; nocase ;)

Figure 7: Shortened rule detecting outbound requests with
anomalous HTTP UA (sid: 2024897)
4.3.3 Command & Control. Figure 7 shows a rule with the goal

of detecting certain outbound traffic, likely originating from an

infected machine. Hence, such traffic could be Command and Con-

trol traffic or malicious traffic aimed at spreading malware. Some

malware is known to use the default HTTPUA from theGolang stan-

dard HTTP client [6, 12, 24], and hence detecting that UA offers a

viable detection opportunity for a broad range of malware. However,

there are benign applications that may use the same UA [17], and

2
The second rule is given in Figure 13 in Appendix C.

one instance of such a benign application could cause an excess of

benign triggers, since the rule will generate an alert for every HTTP

request with that UA. Although this example may appear rare, the

SOC affirms these benign applications, contribute significantly to

unnecessary workload. The usage of benign applications on which

this rule raises FPs results in environment-specific noise, which is

distinct from the universal noise generated by the two previously

examined rules in any public unfiltered network environment.

Although there is no available documentation on the origin of

this rule, we suspect a trade-off was made between coverage and

specificity, and this choice led to the detection of the UA as a proxy

for actions with a malicious origin, although other characteristics

of the corresponding malware can be identified [6]. Detection based

on characteristics more closely related to malicious actions them-

selves can increase specificity at the cost of coverage. Another way

to improve this rule is to include exceptions for common benign

software (such as [17]) using the same UA by including a negative

match on other characteristics within a benign HTTP request such

as a header specific to the benign software and, if need be, excluding

traffic towards certain known-benign IP addresses from inspection.

Alternatively, alert throttling can be applied to limit the number of

FPs to one per client within a certain timeframe.

5 Principles for NIDS Rule Design
We formulate our design principles in Section 5.1 and in Section 5.2

we use regression to assess their effect on unnecessary workload.

5.1 Rule Design Principles
We propose six rule design principles based on our analysis. The

first four are aimed at increasing rule specificity, whereas the last

two are intended to ensure coverage is preserved. For each design

principle, we highlight considerations for specific tactics when

applicable. Our principles may offer choices resulting in rules on a

scale ranging from better to worse. For rules significantly diverging

from the first four principles, we propose taking action to prevent

unnecessary workload. Specifically, one may consider applying

more aggressive alert throttling, reducing the monitoring scope

by ignoring certain traffic directions more prone to noise, or even

labeling the rule as “informational” such that alerts generated by the

rule should not be meant to trigger investigations, but only serve

as contextual information in investigating alerts from other rules.

5.1.1 Limited Proxy. Here, we deal with the choice of the charac-

teristic upon which detection is based. Ideally, rules should detect

a characteristic that is observable as a direct consequence of the

malicious behavior, such as a malicious payload. This may not be

possible for all types of malicious behavior due to encryption, limi-

tations of the detection engine, or similarity to benign behavior. In

those cases, it may be possible to detect a proxy for the malicious

behavior (e.g., a UA set by malware). A characteristic that can be

used as a proxy and does not occur in benign behavior may not

exist for certain types of malicious behavior. In those cases, one

may resort to detecting anomalous behavior that is correlated with

malicious behavior and is believed to rarely be benign.

Using characteristics relating directly to the malicious behavior

will result in lower-noise rules. As an additional advantage, these

rules are typically easier to interpret since they point directly to

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

malicious behavior. The use of proxies may offer more opportunities

for detection, but may also result in increased noise due to benign

triggers, as we have seen in Section 4.3.3. The uniqueness of proxies

to malicious behavior plays a determining role. It should be noted

that estimating how rare certain benign behaviors are is notoriously

difficult. Rules detecting anomalous behavior may therefore result

in a significant amount of noise in certain environments.

Due to the increased adoption of encryption in network traffic

(also by malware), it has become increasingly difficult to find suit-

able characteristics for detection [10]. A common group of proxies

leveraged for detection are JA3 and JA3s hashes [3], which are

hashes of server/client TLS configurations. During our interviews,

it became evident that JA3(s) hashes are useful but have limitations.

It can be difficult to establish how common certain JA3(s) hashes

are in benign traffic. Although it may be possible to scan common

internet services to discover common JA3s hashes [23], it can be

much more challenging to do something similar for client hashes,

although attempts have been made [4].

Application Example.Considering the Reconnaissance rule for Open-
VAS discussed in Section 4.3.1, we could improve it by replacing the

OpenVAS UA as a characteristic by a Base64-encoded test string

included in the request by OpenVAS for a specific vulnerability

scan. A rule example is provided in Appendix C, Figure 12.

5.1.2 Successful Malicious Action. Ideally, rules should trigger only
if a malicious action was successfully executed. To achieve this,

sometimes it may be necessary to observe an additional traffic por-

tion. From this second portion, one may conclude that a malicious

action was successful or that a malicious action could not have been

successful. The second traffic portion may typically be observed in

a server response or a follow-up connection.

However, there are exceptions. One may still accept to build a

rule potentially detecting unsuccessful malicious behavior if that

behavior poses a high risk. We can distinguish between two types

of high-risk behavior, namely temporal and structural risk. The

temporal risk may, for example, be high directly after discovering a

zero-day vulnerability. The structural risk may be high if vulner-

abilities are easy to exploit and have a high impact. Contrary to

structural risk, temporal risk changes over time and, as a result,

rules may require updates when temporal risk changes.

Additionally, an unsuccessful malicious action may still indicate

that a previous malicious action has already succeeded, as would

be the case for lateral movement attempts. Hence, the monitoring

scope in which the malicious behavior is observed is important. A

network scan or initial access attempt executed by an internal host

is more interesting to be alerted about than a scan executed by an

arbitrary host, since it may indicate the internal host is compro-

mised. Alternatively, it should be possible to establish whether a

scan was consequential by leveraging observations in Section 4.3.1.

During the design of a rule, one should also be mindful of the

sensor setup and the impact that the setup has on the monitoring

scope. For instance, if an internal host makes a DNS query for

a website hosting an exploit kit domain, such requests are more

likely to correspond to a successful infection of that host if the

host successfully follows up on the DNS query by making a request

and receiving a response from the host to which the domain name

resolved. It is a common strategy to center detection efforts around

an organization’s crown jewels and only monitor traffic to and

from that limited group of hosts [18]. As a result, it may only be

possible for a SOC to detect a malicious DNS request but not the

corresponding follow-up connection. As a rule of thumb, on the

safe side, one may assume that only follow-up connections between

the same pair of hosts can be guaranteed to be observable.

Application Example.The Initial Access rule discussed in Section 4.3.2
can be improved using flowbits to check for an HTTP 200 response.

Concretely, flowbits: set, coldfusion_admin_access; flowbits:

noalert; is added to the rule shown in Figure 6 and a new rule is

written to check the response, which is shown in Figure 8.

1 alert http $HTTP_SERVERS any -> any any (

2 msg:"ET WEB_SERVER ColdFusion successful administrator access ";

3 flow:established ,to_client;

4 flowbits: isset , coldfusion_admin_access;

5 http.stat_code; content :"200";)

Figure 8: Shortened rule detecting successful Coldfusion ad-
ministrator unauthorized access jointly with the modified
version of the rule in Figure 6 as described in Section 5.1.2

5.1.3 Alert Throttling. Alerting should be limited in a way permit-

ting the identification of attacking devices and (potentially) com-

promised devices. Moreover, different steps of an incident should

be identifiable, though this can usually be achieved through a com-

bination of different rules covering different steps. If alert throttling

cannot be applied such that the distinction of different steps is pos-

sible, it might be necessary to split a rule into several more specific

ones, especially if different steps may have different implications.

Usually, rules can be throttled to generate at most one alert for

each combination of source and destination IPs in a given time win-

dow. The duration of the time window can be chosen to differentiate

repeated actions to the extent they may be relevant. Since we con-

sider building rules in a context where alert data is supported by

generic traffic logs (see Section 2.1), it is still possible to derive how

often and when a certain traffic pattern was observed, given one

example of this pattern. For rules detecting reconnaissance, such as

the rule analyzed in Section 4.3.1, it is possible to apply an aggressive

throttling strategy so that at most one alert is generated per source.

Application Example.Considering the reconnaissance rule presented
in Section 4.3.1, a lower noise alternative based on alert throttling is

shown in Appendix C, Figure 12 and adds threshold: type limit,

track by_src, count 1, seconds, 60;. This improved version will

trigger, at most, one alert per source IP address every minute.

5.1.4 Exceptions. Rule developers should devote effort to identi-

fying in which circumstances a rule may trigger on benign traffic

and creating exceptions for it. This is especially relevant for rules

that trigger on a proxy for malicious behavior or on anomalous

behavior (see Section 5.1.1). The interviewees indicated that it is

common that some rules work perfectly in some environments

but can cause significant unnecessary workloads in others, as we

could conclude from our observations in Section 4.3.3. This is also

confirmed by exceptions covering common antivirus software in

some rules we inspected
3
. Such software may be absent in many

organizations and omnipresent in others, resulting in many benign

triggers. Although some exceptions may be generic, others may be

environment-specific similar to the noise they deflect. An additional

3
An example of such rule is provided in Figure 10 in Appendix C.

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

consideration is that if an adversary knows the deployed rules and

their exceptions, it may allow the attacker to evade detection if the

exception condition is a characteristic they can control.

Application Example. Considering the Command & Control rule

discussed in Section 4.3.3, for which we discussed a common FP.

The rule could be improved by adding a negative content match on

a request header that is specific to the benign software that caused

FPs
4
. The Suricata implementation for such a match would be:

http.request_header; content:!"X-Tailscale-Challenge|3a 20|";.

5.1.5 Generalized Characteristic. As discussed in Section 4.3.2,

characteristics for detection can be chosen in a way to provide

coverage for different variations of similar threats. From malware

analysis reports, including one report we will use as an example

covering DarkVNC [33], we know that characteristics that can be

leveraged for detection may vary depending on the infected host

and even depending on randomness. Specifically, one may consider

each characteristic to have invariable and variable aspects. The

hostname and the randomized identifier observable as part C2 traf-

fic can be considered to be variable, although the format in which

these are observed or specific parts (e.g., the DarkVNC string) can

both be considered to be invariable since these are more likely to be

consistent across different incidents. Rule developers should prefer

matching invariable parts to promote coverage.

Application Example.The initial access rule discussed in Section 4.3.2
could be improved by replacing the content match

http.uri; content:"/CFIDE/administrator"; nocase; by a shorter

one and a regular expression using pcre. Concretely, the content
match would be replaced by: http.uri; content:"/CFIDE/"; pcre:

"/\/CFIDE\/(administrator|adminapi)/i";.

5.1.6 Generalized Position. In addition to the characteristic be-

ing matched by a rule, one should also consider how and specifi-

cally at which location in the network traffic these characteristics

are matched. Adversaries may execute variations of known at-

tacks, potentially with the aim of evading detection, causing the

same characteristic to be observed at a different location. As an

example, consider a vulnerable web application and a rule
5
us-

ing content:"/login.cgi?cli="; as detection option. This rule

would not trigger if instead an attacker would have crafted a request

such as /login.cgi?foo=bar&cli=. Splitting the detection logic

into two parts to separately detect the path and the name of the

query parameter is a way to generalize coverage of the rule whilst

still leveraging the same characteristic.

Application Example. The aforementioned detection option would

be replaced by content:"/login.cgi?"; content:"cli=";.

5.2 Effects of Design Principles on Specificity
Comparison Groups. Asmentioned in Section 3.3, we consider six

groups, consisting of 182 rules in total, that are homogeneous in the

sense that the rules contained therein detect similar behavior and

are diverse in the sense that they are designed in a different way so

that we can compare the effect of design choices made.Wemanually

assign a binary label to each rule concerning the design principles

4
https://github.com/tailscale/tailscale/blob/f1d10c12acf69fcb7509c6aaff65e1a9c8897715/

net/netcheck/netcheck.go#L1034

5
An example of such rule is provided in Appendix C, Figure 11.

described in Section 5.1. For certain design criteria and groups, all

rules were assigned the same label for a design principle because

no rules accounted particularly well/poorly for that principle, caus-

ing no regression to be performed over these variables. Table 2

shows an overview of how labels are distributed. We found that

rules detecting Initial Access techniques rarely distinguish between

successful and unsuccessful actions and rarely use alert throttling.

Results. Table 3 shows the outcome of the regression performed

over the various groups according to the methodology described in

Section 3.3 where the dependent variable is the amount of unneces-

sary workload generated per day. Regression coefficients, together

with corresponding Confidence Intervals (CIs), are also visually rep-

resented in the figure in Table 3. To exemplify the interpretation of

the regression coefficients, we inspect the Other Exploits group. A

rule without any of the design considerations would generate 0.51 1

alerts per day on average, and if we were to detect a characteristic

directly related to the malicious behavior instead of a proxy, this

workload would drop to an expected 0.51 − 0.41 2 = 0.10 alerts per

day, corresponding to a drop of 78%. It is possible the coefficients in

a group sum to a negative number because rules in that group may

typically not adhere to the design principles in a way that regres-

sion would result in a negative workload. Regression performed

on the Active Scanning, Log4j and Drive-by-Compromise groups

resulted in well-fitted models, as indicated by the not-rejected 𝐻0

of the KS tests. Since the 𝐻0 were rejected for the other groups, we

can conclude that there may be other factors beyond the design

principles at play that can explain the variance in unnecessary

workload per day for those rules. For the Other Exploits group, we

suspect the rules in that group may not have been homogenous

enough with respect to the type of threat detected. Despite a lack of

explained variance for the Other Exploits group, we can still trust

whether design principles have positive or negative effects within

that group if their p-values pass the significance test. The same

holds for the Process Injection and Command & Control groups.

We can observe that rules from the Other Exploits group lever-

aging a characteristic directly related to malicious behavior raise

significantly fewer alerts than similar rules making use of a proxy

for malicious behavior. Concretely, we observe a reduction of 78%
2
.

Furthermore, we observe a significant effect in the Log4j group on

rules detecting successful exploitation, which cause 36%
3
less false

positives compared to rules not distinguishing between (un)successful

malicious actions. We also find a small but significant reduction in

workload
4
for rules within the Drive-by-Compromise group and

identify a strong reduction
5
for the Command & Control group.

Moreover, for rules employing a form of alert throttling, we find a

strong significant effect in the Log4j group, suggesting alert throt-

tling can significantly reduce the workload generated by rules. In

particular, we observe a reduction of 99%
6
, which corresponds

to a reduction of 67 alerts per day if we would apply this design

principle to every rule in this small group covering only a single

vulnerability. We note that effect size at the level of the SOC has to

be scaled up to potentially hundreds of rules, therefore significantly

impacting SOC operations. These findings so far are in line with

our expectations based on the principles posed in Section 5.1.

https://github.com/tailscale/tailscale/blob/f1d10c12acf69fcb7509c6aaff65e1a9c8897715/net/netcheck/netcheck.go#L1034
https://github.com/tailscale/tailscale/blob/f1d10c12acf69fcb7509c6aaff65e1a9c8897715/net/netcheck/netcheck.go#L1034

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

Table 2: Breakdown of the different groups and the decomposition of their labels for the prevalence of various design principles.

Design Principle

Comparison Group Limited Proxy

Successful

Malicious Action Exceptions Alert Throttling Generalized Characteristic Generalized Position

Active Scanning 95% (20) 5% (1) 5% (1) 10% (2) 38% (8) 48% (10)

Log4J 100% (9) 22% (2) 0% (0) 67% (6) 22% (2) 100% (9)

Other Exploits 93% (75) 0% (0) 2% (2) 0% (0) 33% (27) 89% (72)

Process Injection 100% (33) 0% (0) 3% (1) 0% (0) 15% (5) 97% (32)

Drive-by-Compromise 74% (14) 11% (2) 5% (1) 0% (0) 26% (5) 89% (17)

Command & Control 5% (1) 79% (15) 16% (3) 5% (1) 79% (15) 26% (5)

Table 3: Effects of the design principles on the volume of unnecessary workload generated per day and their significance.
Significant coefficients and corresponding p-values are typeset in bold. Dashes (-) are used to indicate no regression was
performed over a label due to a lack of positively/negatively labeled samples for that label within that group. At the bottom of
the table, the number of observations is shown, as well as the test statistic and p-values for the Kolmogorov-Smirnov tests
conducted as goodness-of-fit tests. The figure is a visual representation of the table showing the regression coefficients together
with the corresponding Confidence Intervals (CIs).

Design Principle

Comparison Group

Active

Scanning Log4j

Other

Exploits

Process

Injection

Drive-by

-Compromise

Command

& Control

Coef. P-val. Coef. P-val. Coef. P-val. Coef. P-val.

Constant 0.07 0.87 7.45 < 0.01 0.51 1 < 0.01 0.04 < 0.01 0.06 < 0.01 0.18 0.10

Limited Proxy − − − − −0.41 2 < 0.01 − − −∗ − − −
Successful Malicious Action − − −2.71 3 < 0.01 − − − − −0.04 4 < 0.01 −0.19 5 0.02
Exceptions

9 − − − − −0.04 0.64 − − − − −0.02 0.82

Alert Throttling 0.58 0.50 −7.39 6 < 0.01 − − − − − − − −
Generalized Characteristic

7 1.27 0.02 0.82 < 0.01 −0.02 0.61 0.02 0.44 1.87∗ < 0.01 0.05 0.51

Generalized Position
8

0.43 0.38 − − −0.00 0.96 − − −0.01 0.26 0.04 0.61

N.obs. 21 9 81 33 19 19

Kolmogorov-Smirnov Test 0.33 0.20 0.22 0.99 0.58 < 0.01 0.58 < 0.01 0.32 0.31 0.53 < 0.01

∗
The Limited Proxy principle was omitted from the regression since the Limited Proxy and Generalized Characteristic labels are the invese of eachother for the

Drive-by-Compromise group.

1 0 1 2
Coefficient

Generalized Position
Generalized Characteristic

Alert Throttling
Exceptions

Successful Malicious Action
Limited Proxy

Active Scanning

5 0
Coefficient

Log4j

0.4 0.2 0.0
Coefficient

Other Exploits

0.00 0.05
Coefficient

Process Injection

0 1
Coefficient

Drive-by-Compromise

0.2 0.0 0.2
Coefficient

Command & Control

Another significant finding is that rules using a characteristic

that is generalized to match similar threats cause more workload

than their peers using more specific characteristics in the Active

Scanning, Log4j, and Drive-by-Compromise groups
7
. Although

this design principle was intended to increase coverage, it nega-

tively impacts workload suggesting a trade-off between coverage

and specificity should be carefully considered. In particular, we do

not observe any significant effects for rules generalizing the posi-

tion of the matched characteristic
8
. In further detail, we observe

mixed effects when looking at the coefficients. It is possible that

generalizing the position of the matched characteristic has no effect

on the generated workload, considering this design principle is pri-

marily aimed at increasing coverage. For rules including exceptions,

we also observe no significant effects in any group
9
. Potentially,

significance was difficult to obtain due to the lack of rules utilizing

exceptions, as reported in Table 2. Furthermore, exceptions may

be included as a coping mechanism to deal with otherwise high-

noise rules causing a potential correlation between the label and

the generated workload. Another potential reason for the lack of a

significant effect may be that exceptions can be specific to certain

environments or applications, rendering their inclusion irrelevant

in other environments. Nevertheless, we can see that all other co-

efficients for this principle suggest a reduction of the workload

generated albeit the effect is not statistically significant.

6 Operationalization of Design Principles
We now provide an evaluation of the prevalence of design princi-

ple violations in two common rulesets (ProofPoint’s ETOPEN and

ETPRO), and how the application of the proposed design principles

to a subset of selected rules can impact alert generation in a SOC.

Prevalence of design principles. We devise a tool to predict

whether a rule adheres to the principles using the manually labeled

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Table 4: Principle Violation Detection Tool performance
across the different groups and the adherence to the vari-
ous design principle in the combined open and commercial
rulesets acquired by the SOC according to the tool.

Cross-Validation SOC Ruleset

Design Principle Precision Recall Count Proportion

Limited Proxy 0.81 0.70 42𝑘 62%

Successful 0.99 1.00 18𝑘 28%

Exceptions 0.98 0.95 57𝑘 85%

Alert Throttling 1.00 1.00 64𝑘 96%

Generalized Characteristic 0.92 0.62 20𝑘 30%

Generalized Position 0.74 0.43 16𝑘 24%

rules from Section 3.4 as training data and using implementation-

level features describing used options and keywords. For each prin-

ciple, we train a separate eXtreme Gradient Boosting (XGBoost)

classifier [7, 37] and evaluate its effectiveness by 10 repeated strat-

ified 2-fold Cross-Validations (CV). The leveraged features and the

optimization procedure using grid search are further detailed in Ap-

pendix D. Table 4 shows the CV scores for each design principle and

the estimated prevalence of violations of principles in the twomajor

rulesets (ETOPEN, ETPRO) widely employed by SOCs. The results

show that the tool is capable of detecting design principles viola-

tions, with most precision scores exceeding 0.90. The data suggests

the majority of the rules focuses detection efforts on successful ma-

licious actions and uses a generalized characteristic that is matched

at a variable location, although the majority also uses proxies for

detection and fails to utilize exceptions and alert throttling.

Effect on monitoring environments. To assess the actionability

of the design principles and to showcase the effect sizes in monitor-

ing environments, we conduct two experiments: first, we evaluate

the effect of the modified rules on alert triggers and coverage over a

standard intrusion detection dataset, CIC-IDS2017 [36]. Second, we

evaluate the effect of deploying the improved rules in the detection

environment of the collaborating SOC on alert workload.

1) Effect on event coverage. Using the tool described above, we iden-

tify rules available to the SOC that deviate from the design princi-

ples and choose among these the rules that can detect malicious

activity in the CIC-IDS2017 dataset [36]. We then chose to improve

the noisiest rules, i.e. those that cause at least one FP daily in the

SOC. At our request, the Tier-2 analyst who participated in the

interviews (Section 3.3.2) is tasked to improve these rules by imple-

menting the proposed principles. Using the tool we establish the

improved rules
6
together violate 34% less principles. Table 5 shows

the results on alert-triggering on the CIC-IDS2017 dataset for the

original and improved rules. The results show that the improved

rules detected the same attacks on CIC-IDS2017 whilst raising fewer

alerts and not triggering on benign traffic or attempted attacks.
7

While the improved ruleset has fewer unique rules detecting the

two portscan categories, an investigation of the alerts generated by

the rules that only fired before the improvement reveals that these

alerts correspond to scans for which no connection was successfully

established, and hence no open services were discovered. These

connections and the attempted bruteforce attack are not detected by

6
Rules with noalert set are excluded to ensure groups have an equal number of rules.

7
Although a more ideal coverage evaluation could use a user study to asses whether

alert investigations result in similar conclusions, this is beyond the scope of the paper.

Table 5: Overview of coverage provided by the original and
improved rules on the CIC-IDS2017 dataset.

Original Improved

Label Rules Alerts

Attack

Detected Rules Alerts

Attack

Detected

Benign 1 2 ~ 0 0 ~
SSH-Patator 1 31 ✓ 1 31 ✓
Brute Force

Attempted

1 46
∗✓ 0 0 ~

XSS 1 320 ✓ 1 3 ✓
SQL Injection 3 17 ✓ 3 3 ✓
Infiltration

Portscan

7 105 ✓ 2 8 ✓

Portscan 10 148
∗✓ 2 7 ✓

∗
Some labels do not (always) correspond to successful malicious actions.

the improved rules since they do not indicate successful malicious

actions. Overall, we find that the improved rules trigger far fewer

times while maintaining the same coverage as the original rules.

2) Effect in the SOC’s environment. We deploy the modified and

original rules in the SOC and evaluate effects on triggered alerts

over a period of 27 days in production. The results indicate that

the improved rules trigger 167 245 fewer alerts (i.e., 98%) than the

original rules, thus significantly reducing the workload generated

by these rules. We conclude that the proposed principles can help

SOCs improve noisy rules to retain coverage and improve specificity,

as an alternative to the typical tuning by disabling noisy rules.

7 Discussion
In Section 5, we propose six design principles to support the develop-

ment of rules such that rule specificity can be maximized while pre-

serving coverage. We believe these principles will benefit rule devel-

opers, especially less experienced ones. Users range from junior rule

developers at a SOC to malware researchers who create rules as a re-

sult of their malware investigations. These rules are often collected

as part of community rulesets and may be deployed in multiple lo-

cations, with negative consequences if these were high-noise rules.

The proposed design principles may also be useful to SOC engi-

neers when tuning their rulesets to minimize FPs. Strict adherence

to the principles is nontrivial, and trade-offs may exist that compel

rule engineers to deviate from a posed design principle, e.g., lever-

aging proxies to reduce the rule development time. An improved

understanding of the effects of the principles contributes to making

such trade-offs. The simplest use case could be to review rules based

on the principles and suppress rules based on how well they adhere

to them. We also envision another use case where, after review,

engineers can improve new rules ingested from community and

commercial rulesets or CTI feeds based on the principles, as show-

cased in Section 6. For instance, typical rules detecting reconnais-

sance activity could be tailored to specific customer environments

(limiting the source or destination addresses causing the rule to

trigger); rules detecting exploitation attempts could be augmented

to only trigger in case of evidence of successful exploitation, etc. In

addition, the inclusion of exceptions, which only few rules appear to

have, could greatly benefit from feedback loops as proposed in [42].

We make several additional observations based on our analy-

sis of the rules applied at the collaborating SOC. Based on the

(limited) labeling of rules we did, we observe that for community

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

and commercial rulesets, there appears to be a lack of rules dis-

tinguishing between successful and unsuccessful attacks, which

could be a major improvement point. Contrary to the relatively

common practice of disabling legacy rules at SOCs [42], we find that

legacy rules can effectively contribute to the detection of incidents.

Since no incidents within the monitoring scope remained unde-

tected, as discussed in Section 4.2, we suspect that coverage does

not require major improvements. Furthermore, our results confirm

several findings from [43], stating that a significant majority of the

alerts are not related to any security incident and that there exists a

large imbalance among the number of alerts generated by each rule.

Therefore, automated approaches operating on SOC alert data, such

as [9], must be (made) robust in the presence of large imbalance

and data quality issues. Even if alert or incident data cannot be

released due to a Non-Disclosure Agreement (NDA) with the SOC,

we make available the tool
8
used to assess the adherence to the

principles and the improved rules
9
from Section 5.1 and Section 6.

Limitations. The generalization of the statistical inferences iden-

tified in Section 5.2 depends on the assumptions that (1) the SOC

employs common practices; and (2) the monitored network environ-

ments are similar. Although our research leverages rule, alert, and

incident data from multiple organizations over a prolonged period,

it is still only reflective of a single SOC. The collaborating SOC ap-

plies several common practices also seen at other SOCs as described

in related work [42, 43, 45], and we expect our findings to generalize

to other SOCs monitoring similar environments. However, we deem

the generalization of our findings to ICS or IoT domains a point

to be addressed by future research. Additionally, we derived our

design principles from rules meant to detect three specific tactics:

Reconnaissance, Initial Access, and Command & Control. While we

consider these among the most relevant for a NIDS, we cannot ex-

clude that other specific or, less likely, even general design principles

could be formulated when analyzing rules meant to detect other tac-

tics, such as Lateral Movement. Furthermore, we acknowledge that

the identified principles may affect NIDS performance, other than

specificity and coverage, which are beyond the scope of this study.

The collaborating SOC strictly defines incidents as events with

a security impact. As such, events of this type are relatively rare

in our dataset, especially compared to some previous studies using

similar data. This constitutes a challenge as fewer observations are

available to make statistical inferences, limiting the possibility of

investigating the effect of the principles on the number of detected

incidents. On the other hand, the precise definition allows us to

narrow our evaluation to events that really matter. Furthermore, the

few observations for the log4j group in Table 3 suggest more data

points would increase confidence for this group. The rejection of𝐻0

in the KS-test for certain groups suggests some regression models

are unsatisfactory for explaining variance. A lack of homogeneity

w.r.t. what rules within these groups detect may cause variation in

unnecessary workload between these rules, regardless of how the

rules are written. Alternatively, variables beyond the design prin-

ciples discussed in this work may further explain variance within

these groups, which can be a topic for future research. As a mitiga-

tion, we conducted the additional experiment in Section 6 as a sanity

8
https://github.com/Koen1999/suricata-check

9
https://github.com/Koen1999/ruling-the-unruly

check, where we improved rules deviating from the principles and

evaluated the effect on the specificity and coverage. This additional

experiment reinforces the conclusions drawn in the prior sections.

Future Work. During the interviews, we discussed several factors
that can influence the quality of IoC-based rules. For instance, differ-

ent rules should be built based on IP addresses associated with scan-

ning activity vs. addresses associated with C2 infrastructures. The

unnecessary workload caused by IoC-based rules may be mitigated

by quality checks performed on the IoCs. For instance, whether an

IoC is current should be monitored through its age and potentially

other aspects to assess whether it should still be leveraged for detec-

tion. Considering our finding from Section 4.2 that IoC-based rules

contribute greatly to the incident detection, we believe future re-

search can investigate the design of IoC-based rules more in-depth.

In addition to specificity and coverage, other requirements [13],

such as explainability [2], can be important for rule design and

could drive future research. Syntax and formatting, as discussed by

[38], can improve the maintainability of rules and the actionability

of alerts. The inclusion of appropriate metadata was also indicated

to be important for interpretability during the interviews. Docu-

mentation concerning the rule design, development, and revision

process is currently not available for many of the inspected rules,

but would be considered very beneficial to both maintainability and

interpretability. Moreover, a lack of rule portability may be related

to the noisiness of rules in some, but not all, environments.

8 Conclusion
In this paper, we explore data from a SOC to characterize the NIDS

rules responsible for unnecessary workload. During this process,

we discover six relevant design principles, which we consolidate

through interviews with experienced SOC rule designers. We then

validate our principles by quantitatively assessing their effect on

rule specificity. We find that several of these design considerations

significantly impact rule specificity. For instance, rules that leverage

proxies for detection, and rules that do not employ alert throttling

or do not distinguish (un)successful malicious actions, cause signifi-

cantly more workload for SOC analysts. Moreover, rules that match

a generalized characteristic to detect malicious behavior, which is

believed to increase coverage, significantly increase the workload as

well, suggesting a trade-off must be struck between specificity and

coverage. We have demonstrated that while the design principles

are often violated, these principles can be applied successfully at

SOCs to reduce workload whilst maintaining coverage.

Acknowledgments
The authors thank the unnamed SOC for their cooperation and for

making data available for analysis, as well as the domain experts

with whom we discussed the design principles.

This publication is part of the CATRIN and INTERSECT projects

(with numbersNWA.1215.18.003 andNWA.1160.18.301), which is (partly)

financed by the Dutch Research Council (NWO). For the purpose of

Open Access, a CC-BY 4.0 public copyright license is applied to any

Author Accepted Manuscript version arising from this submission.

https://github.com/Koen1999/suricata-check
https://github.com/Koen1999/ruling-the-unruly

Ruling the Unruly ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

References
[1] Greenbone AG. 2024. Open Vulnerability Assessment Scanner. https://www.

openvas.org/

[2] Bushra A. Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Pos-

itives: A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms.

In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,

Boston, MA, 2783–2800. https://www.usenix.org/conference/usenixsecurity22/

presentation/alahmadi

[3] John Althouse. 2019. TLS Fingerprinting with JA3 and JA3S. Salesforce,

Inc. https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-

247362855967

[4] Trisul Network Analytics. 2018. ja3prints. https://github.com/trisulnsm/

ja3prints/blob/master/ja3fingerprint.json

[5] Scott Buckel. 2013. Adobe ColdFusion 9 - Administrative Authentication Bypass.

https://www.exploit-db.com/exploits/27755

[6] Larry Cashdollar. 2023. Updated Kmsdx Binary Shows KmsdBot Is Targeting the
IoT Landscape. Akamai Technologies. https://www.akamai.com/blog/security-

research/updated-kmsdbot-binary-targeting-iot

[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 785–794. doi:10.

1145/2939672.2939785

[8] The MITRE Corporation. 2024. MITRE ATT&CK®. https://attack.mitre.org/

[9] Thijs Van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti, Marco

Cova, Andrea Continella, Maarten Van Steen, Andreas Peter, Christopher Kruegel,

and Giovanni Vigna. 2022. DEEPCASE: Semi-Supervised Contextual Analysis of

Security Events. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 522–539. doi:10.1109/SP46214.2022.9833671

[10] D. Fauri, B. de Wijs, J.I. den Hartog, E. Costante, Emmanuele Zambon-Mazzocato,

and S. Etalle. 2018. Encryption in ICS networks : a blessing or a curse?. In IEEE
SmartGridCom : Proceedings of the 2017 IEEE International Conference on Smart
Grid Communications, 23-26 October 2017, Dresden, Germany. IEEE Computer

Society, United States, 289–294. doi:10.1109/SmartGridComm.2017.8340732 2017

IEEE International Conference on Smart Grid Communications, SmartGridCom ;

Conference date: 23-10-2017 Through 26-10-2017.

[11] Apache Software Foundation. 2021. Log4j Security. https://logging.apache.org/

log4j/2.x/security.html

[12] Josh Grunzweig. 2019. The Gopher in the Room: Analysis of GoLang Malware in
the Wild. Palo Alto Networks, Inc. https://unit42.paloaltonetworks.com/the-

gopher-in-the-room-analysis-of-golang-malware-in-the-wild/

[13] Khan Mohammad Habibullah and Jennifer Horkoff. 2021. Non-functional Re-

quirements for Machine Learning: Understanding Current Use and Challenges

in Industry. In 2021 IEEE 29th International Requirements Engineering Conference
(RE). Institute of Electrical and Electronics Engineers Inc, Online Event, 13–23.

doi:10.1109/RE51729.2021.00009

[14] Adobe Systems Inc. 2013. Security Advisory for ColdFusion. https://www.adobe.

com/support/security/advisories/apsa13-01.html

[15] Proofpoint Inc. 2021. ET Category Descriptions. https://tools.emergingthreats.

net/docs/ETPro%20Rule%20Categories.pdf

[16] Proofpoint Inc. 2023. Proofpoint Emerging Threats Rules. https://rules.

emergingthreats.net/open/suricata/rules/

[17] Tailscale Inc. 2024. tailscale-client-go. https://github.com/tailscale/tailscale-

client-go

[18] Kathryn Knerler, Ingrid Parker, and Carson Zimmerman. 2022. 11 Strategies of a
World-Class Cybersecurity Operations Center. The MITRE Corporation, Bedford,

MA.

[19] Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan Shoshitaishvili, Ziming

Zhao, Adam Doupé, and Gail-Joon Ahn. 2019. Matched and Mismatched SOCs:

A Qualitative Study on Security Operations Center Issues. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. ACM,

London United Kingdom, 1955–1970. doi:10.1145/3319535.3354239

[20] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.

2013. Intrusion detection system: A comprehensive review. Journal of Network
and Computer Applications 36, 1 (2013), 16–24. doi:10.1016/j.jnca.2012.09.004

[21] ReliaQuest LLC. 2021. Threat Actors Living Off the Land. https://www.reliaquest.

com/blog/threat-actors-living-off-the-land/

[22] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[23] Petr Matoušek, Ivana Burgetová, Ondřej Ryšavý, and Malombe Victor. 2021.

On Reliability of JA3 Hashes for Fingerprinting Mobile Applications. In Digital
Forensics and Cyber Crime, Sanjay Goel, Pavel Gladyshev, Daryl Johnson, Makan

Pourzandi, and Suryadipta Majumdar (Eds.). Springer International Publishing,

Cham, 1–22.

[24] Anmol Maurya. 2021. Golang Malware Is More than a Fad: Financial Motivation
Drives Adoption. Crowdstrike. https://www.crowdstrike.com/blog/financial-

motivation-drives-golang-malware-adoption/

[25] Metasploit. 2013. Adobe ColdFusion 9 - Administrative Authentication Bypass

(Metasploit). https://www.exploit-db.com/exploits/30210

[26] Jonathan Munshaw. 2014. Decoding Domain Generation Algorithms (DGAs) Part
III - ZeusBot DGA Reproduction. Cisco Systems, Inc. https://blog.talosintelligence.

com/decoding-domain-generation-algorithms/

[27] Open Information Security Foundation (OISF). 2023. Suricata. https://suricata.io/

[28] Open Information Security Foundation (OISF). 2023. Suricata User Guide. https:

//docs.suricata.io/en/latest/

[29] Ahmet Okutan and Shanchieh Jay Yang. 2019. ASSERT: attack synthesis and

separation with entropy redistribution towards predictive cyber defense. Cyber-
security 2, 1 (12 2019), 15. doi:10.1186/s42400-019-0032-0

[30] Robert M O’brien. 2007. A caution regarding rules of thumb for variance inflation

factors. Quality & quantity 41 (2007), 673–690.

[31] Josef Perktold, Skipper Seabold, Jonathan Taylor, and statsmodels developers.

2024. statsmodels. https://www.statsmodels.org/stable/index.html

[32] The Zeek Project. 2023. Zeek. https://zeek.org/

[33] ReaQta. 2017. A short journey into DarkVNC attack chain. https://reaqta.com/

2017/11/short-journey-darkvnc/ Accessed from archive.

[34] Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield,

Bernadette Bartlam, Heather Burroughs, and Clare Jinks. 2018. Saturation in qual-

itative research: exploring its conceptualization and operationalization. Quality
& quantity 52 (2018), 1893–1907.

[35] SentinelOne. 2023. What Is Cyber Reconnaissance? https://www.sentinelone.

com/cybersecurity-101/what-is-cyber-reconnaissance/

[36] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward

Generating a New Intrusion Detection Dataset and Intrusion Traffic Characteri-

zation. In Proceedings of the 4th International Conference on Information Systems
Security and Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24,
2018, Paolo Mori, Steven Furnell, and Olivier Camp (Eds.). SciTePress, Funchal,

Portugal, 108–116. doi:10.5220/0006639801080116

[37] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is not

all you need. Information Fusion 81 (2022), 84–90. doi:10.1016/j.inffus.2021.11.011

[38] sidallocation. 2024. suricata-style-guide. https://github.com/sidallocation/

suricata-style-guide

[39] Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and Statistical

Modeling with Python. In Proceedings of the 9th Python in Science Conference,
Stéfan van der Walt and Jarrod Millman (Eds.). Curvenote Inc., Austin, Texas, 92

– 96. doi:10.25080/Majora-92bf1922-011

[40] Sathya Chandran Sundaramurthy, John McHugh, Xinming Ou, Michael Wesch,

Alexandru G. Bardas, and S. Raj Rajagopalan. 2016. Turning contradictions into

innovations or: how we learned to stop whining and improve security operations.

In Proceedings of the Twelfth USENIX Conference on Usable Privacy and Security
(Denver, CO, USA) (SOUPS ’16). USENIX Association, USA, 237–251.

[41] Christian Taillon. 2024. Snort and Suricata Rule Guide. https://christiant.io/snort-

suricata-guide

[42] Mathew Vermeer, Natalia Kadenko, Michel van Eeten, Carlos Gañán, and Simon

Parkin. 2023. Alert Alchemy: SOC Workflows and Decisions in the Management

of NIDS Rules. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’23). Association for Computing Machinery,

New York, NY, USA, 2770–2784. doi:10.1145/3576915.3616581

[43] Mathew Vermeer, Michel van Eeten, and Carlos Gañán. 2022. Ruling the Rules:

Quantifying the Evolution of Rulesets, Alerts and Incidents in Network Intrusion

Detection. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security (Nagasaki, Japan) (ASIA CCS ’22). Association for Com-

puting Machinery, New York, NY, USA, 799–814. doi:10.1145/3488932.3517412

[44] Kristijan Vidovic, Ivan Tomicic, Karlo Slovenec, Miljenko Mikuc, and Ivona

Brajdic. 2021. Ranking Network Devices for Alarm Prioritisation: Intrusion

Detection Case Study. In 2021 International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM). IEEE, Split, Hvar, Croatia, 1–5.
doi:10.23919/SoftCOM52868.2021.9559086

[45] Manfred Vielberth, Fabian Bohm, Ines Fichtinger, and Gunther Pernul. 2020.

Security Operations Center: A Systematic Study and Open Challenges. IEEE
Access 8 (2020), 227756–227779. doi:10.1109/ACCESS.2020.3045514

[46] Eric Wustrow, Manish Karir, Michael Bailey, Farnam Jahanian, and Geoff Huston.

2010. Internet background radiation revisited. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (Melbourne, Australia) (IMC ’10).
Association for Computing Machinery, New York, NY, USA, 62–74. doi:10.1145/

1879141.1879149

[47] Limin Yang, Zhi Chen, Chenkai Wang, Zhenning Zhang, Sushruth Booma,

Phuong Cao, Constantin Adam, Alexander Withers, Zbigniew Kalbarczyk, Ravis-

hankar K. Iyer, and Gang Wang. 2025. True attacks, attack attempts, or benign

triggers? an empirical measurement of network alerts in a security operations

center. In Proceedings of the 33rd USENIX Conference on Security Symposium
(Philadelphia, PA, USA) (SEC ’24). USENIX Association, USA, Article 86, 18 pages.

https://www.openvas.org/
https://www.openvas.org/
https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://github.com/trisulnsm/ja3prints/blob/master/ja3fingerprint.json
https://github.com/trisulnsm/ja3prints/blob/master/ja3fingerprint.json
https://www.exploit-db.com/exploits/27755
https://www.akamai.com/blog/security-research/updated-kmsdbot-binary-targeting-iot
https://www.akamai.com/blog/security-research/updated-kmsdbot-binary-targeting-iot
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://attack.mitre.org/
https://doi.org/10.1109/SP46214.2022.9833671
https://doi.org/10.1109/SmartGridComm.2017.8340732
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://unit42.paloaltonetworks.com/the-gopher-in-the-room-analysis-of-golang-malware-in-the-wild/
https://unit42.paloaltonetworks.com/the-gopher-in-the-room-analysis-of-golang-malware-in-the-wild/
https://doi.org/10.1109/RE51729.2021.00009
https://www.adobe.com/support/security/advisories/apsa13-01.html
https://www.adobe.com/support/security/advisories/apsa13-01.html
https://tools.emergingthreats.net/docs/ETPro%20Rule%20Categories.pdf
https://tools.emergingthreats.net/docs/ETPro%20Rule%20Categories.pdf
https://rules.emergingthreats.net/open/suricata/rules/
https://rules.emergingthreats.net/open/suricata/rules/
https://github.com/tailscale/tailscale-client-go
https://github.com/tailscale/tailscale-client-go
https://doi.org/10.1145/3319535.3354239
https://doi.org/10.1016/j.jnca.2012.09.004
https://www.reliaquest.com/blog/threat-actors-living-off-the-land/
https://www.reliaquest.com/blog/threat-actors-living-off-the-land/
https://www.crowdstrike.com/blog/financial-motivation-drives-golang-malware-adoption/
https://www.crowdstrike.com/blog/financial-motivation-drives-golang-malware-adoption/
https://www.exploit-db.com/exploits/30210
https://blog.talosintelligence.com/decoding-domain-generation-algorithms/
https://blog.talosintelligence.com/decoding-domain-generation-algorithms/
https://suricata.io/
https://docs.suricata.io/en/latest/
https://docs.suricata.io/en/latest/
https://doi.org/10.1186/s42400-019-0032-0
https://www.statsmodels.org/stable/index.html
https://zeek.org/
https://reaqta.com/2017/11/short-journey-darkvnc/
https://reaqta.com/2017/11/short-journey-darkvnc/
https://www.sentinelone.com/cybersecurity-101/what-is-cyber-reconnaissance/
https://www.sentinelone.com/cybersecurity-101/what-is-cyber-reconnaissance/
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/j.inffus.2021.11.011
https://github.com/sidallocation/suricata-style-guide
https://github.com/sidallocation/suricata-style-guide
https://doi.org/10.25080/Majora-92bf1922-011
https://christiant.io/snort-suricata-guide
https://christiant.io/snort-suricata-guide
https://doi.org/10.1145/3576915.3616581
https://doi.org/10.1145/3488932.3517412
https://doi.org/10.23919/SoftCOM52868.2021.9559086
https://doi.org/10.1109/ACCESS.2020.3045514
https://doi.org/10.1145/1879141.1879149
https://doi.org/10.1145/1879141.1879149

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Koen T. W. Teuwen, Tom Mulders, Emmanuele Zambon, and Luca Allodi

A Suricata rule syntax

Figure 9: Rule syntax used by Suricata NIDS.

B Dataset key statistics

Table 6: Overview of key statistics (mean and standard devia-
tion) of the collected dataset, covering rules and alerts.

Daily Uniquely Triggered Rules ≃ 41 ± 18

Daily Uniquely Observed Techniques ≃ 8 ± 2

Daily Uniquely Observed CVEs ≃ 3 ± 4

Daily Alerts 46 309 ± 75 660

Minimum Daily Attackers 26 ± 10

Maximum Daily Attackers 3 775 ± 936

Minimum Daily Targets 8 ± 7

Maximum Daily Targets 1286 ± 39

Unnecessary Workload per Rule 21 ± 282

C Additional examples of Intrusion Detection
Rules

1 alert http $HOME_NET any -> $EXTERNAL_NET any (

2 msg:"ET MALWARE Terse alphanumeric executable downloader high

likelihood of being hostile ";

3 flow:established ,to_server;

4 http.uri; content :"/"; content :".exe"; distance :1; within :8;

endswith; pcre :"/\/[A-Z]?[a-z]{1 ,3}[0 -9]?\. exe$ /";

5 http.header; content :!" koggames "; http.host; content :!" download.

bitdefender.com"; endswith; content :!". appspot.com"; endswith

; content :!" kaspersky.com"; endswith; content :!". sophosxl.net

"; endswith;

6 http.header_names; content :!" Referer "; nocase ;)

Figure 10: Shortened rule detecting executable downloads
with numerous exceptions for common anti-virus software
(sid: 2019714)

1 alert http any any -> $HOME_NET any (

2 msg:"ET EXPLOIT D-Link DSL -2750B - OS Command Injection ";

3 flow:established ,to_server;

4 http.uri; content :"/ login.cgi?cli="; pcre :"/^[a-zA-Z0 -9+_]*[\ x27\

x3b]/Ri";)

Figure 11: Shortened rule detecting command injection using
a fixed location for the HTTP GET query parameter name
(sid: 2025756)

1 alert http $EXTERNAL_NET any -> $HOME_NET any (

2 msg:"ET SCAN OpenVASVT RCE Test String in HTTP Request Inbound ";

3 flow:established ,to_server;

4 content :" T3BlblZBU1ZUIFJDRSBUZXN0 ";

5 threshold:type limit , track by_src , count 1, seconds 60;)

Figure 12: Shortened rule detecting inbound OpenVAS User-
Agent (sid: 2033101)

1 alert http any any -> $HTTP_SERVERS any (

2 msg:"ET WEB_SERVER ColdFusion adminapi access ";

3 flow:established ,to_server;

4 http.method; content :"GET"; nocase;

5 http.uri; content :"/ CFIDE/adminapi ";)

Figure 13: Shortened rule detecting Coldfusion unauthorized
adminapi access attempts (sid: 2016183)

D Training procedure of Principle Adherence
Detection Tool

The tool’s goal is to predict whether a rule adheres to the principles

after being trained on the 182 manually labeled rules from Sec-

tion 3.4 and using implementation-level features describing used

detection options and keywords. One group of features are inte-

gers describing how often (and hence also whether) an option is

used in a rule. This feature was computed for the content, depth,

http.uri, http.method, urilen, startswith, pcre, and bsize options.

Additionally, we devise an additional feature by counting the num-

ber of negated matches performed. We also devise features that

describe whether the source and destination IP addresses speci-

fied by the rule use address groups like $HOME_NET, $HTTP_SERVERS,

$EXTERNAL_NET, and any. We also include features describing the val-

ues set for the threshold.type and threshold.count options. The

last group of features describes whether the flow options to_server

and to_client, or their equivalents, are set by the rule.

For each principle, an eXtreme Gradient Boosting (XGBoost) clas-

sifier [7] is trained separately and evaluated by 10 repeated stratified

2-fold Cross-Validations (CV). XGBoost is known to perform well

on a various tasks and can outperform deep neural networks with

more parameters [37]. Using grid search on the grid
10

shown in Ta-

ble 7, hyperparameters are optimized for a weighted variant of the

F1-score where precision was assigned a 10 times greater weight

than recall. The resulting weighted F1-scores ranged from 0.72 to

1.00.

Table 7: Grid search optimization parameters for theXGBoost
algorithm.

Number of decision trees 1000

Loss function Logistic

Eta (learning rate) [0.01, 0.1, 0.3]
Sample sampling rate 1.0

Feature sampling rate [0.25, 0.5, 0.75, 1.0]
Sample weight scaling [0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0]
Maximum tree depth [1, 3]
Minimum child weight [1]
Gamma [0, 0.1]
Lambda (L2 regularization) [0, 0.01, 0.1]
Alpha (L1 regularization) [0, 0.01, 0.1]

10
Where unspecified the default parameters of the XGBoost Python implementation

are used.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Security Operations & Intrusion Detection
	2.2 Rulesets & Rule Engineering

	3 Methodology
	3.1 Data Provisioning
	3.2 Data Description
	3.3 Design Principles Derivation
	3.4 Effect Size Evaluation
	3.5 Ethical Considerations

	4 Data Exploration
	4.1 Ruleset Overview & Typical rules
	4.2 Incident Detection by Rules
	4.3 Inspection of High-Noise Rules

	5 Principles for NIDS Rule Design
	5.1 Rule Design Principles
	5.2 Effects of Design Principles on Specificity

	6 Operationalization of Design Principles
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Suricata rule syntax
	B Dataset key statistics
	C Additional examples of Intrusion Detection Rules
	D Training procedure of Principle Adherence Detection Tool

