
1

On the Effect of Ruleset Tuning and Data Imbalance on Explainable Network
Security Alert Classifications: a Case-Study on DeepCASE

Koen T. W. Teuwen, Sam Baggen, Emmanuele Zambon and Luca Allodi
Eindhoven University of Technology

Eindhoven, The Netherlands
{k.t.w.teuwen, s.a.m.baggen, e.zambon, l.allodi}@tue.nl

Abstract—Automation in Security Operations Centers
(SOCs) plays a prominent role in alert classification and
incident escalation. However, automated methods must be
robust in the presence of imbalanced input data, which
can negatively affect performance. Additionally, automated
methods should make explainable decisions. In this work, we
evaluate the effect of label imbalance on the classification
of network intrusion alerts. As our use-case we employ
DeepCASE, the state-of-the-art method for automated alert
classification. We show that label imbalance impacts both
classification performance and correctness of the classifica-
tion explanations offered by DeepCASE. We conclude tuning
the detection rules used in SOCs can significantly reduce im-
balance and may benefit the performance and explainability
offered by alert post-processing methods such as DeepCASE.
Therefore, our findings suggest that traditional methods to
improve the quality of input data can benefit automation.

Index Terms—Security Operations Center (SOC), Network
Intrusion Detection System (NIDS), Network Security Alerts,
Alert Reduction, Intrusion Detection Ruleset Tuning, Net-
work Intrusion Detection Rules

1. Introduction

Security Operations Centers (SOCs) are important to
an organization’s security strategy. A SOC monitors net-
work and/or host activity to detect malicious events [1].
SOCs employ a variety of tools to aid in monitoring
efforts, including Network Intrusion Detection Systems
(NIDS), which have been known to generate an unmanage-
able volume of security events for suspicious activities [2].
Suricata [3] is a common signature-based NIDS that em-
ploys rules defining the malicious behavior to detect and
raise alerts. SOC analysts use related events and con-
textual information to determine whether an incident has
occurred [4]. A substantial part of the resulting workload
can be considered unnecessary due to the high prevalence
of False Positives (FPs, i.e., false alerts) [5].

Previous research improves detectors using traditional
methods, such as studying effective rule design [6]. Tuning
of IDS rulesets [1] is commonly applied in SOCs but can
negatively affect IDS coverage [7]. A second stream of
work reduces the workload required to process incoming
alerts [8]–[10]. Similarly to the analyst process [4], these
methods leverage contextual events to determine which
alerts are related to incidents.

The trustworthiness of automated solutions in SOCs
depends on their robustness in light of data characteristics

such as concept drift [11], [12] or the emergence of previ-
ously unseen classes [13], and on the explanations offered
by these methods [14] to help analysts understand poten-
tial cybersecurity incidents. Although it is well known that
network intrusion data is highly imbalanced [5], [6], [15],
and related studies suggest that imbalanced data [16], [17]
negatively affect Machine-Learning (ML) performance,
the effect of high imbalance on the performance of alert
post-processing solutions remains unclear. For example,
if a malicious connection overlaps with multiple benign
connections in the feature space, a classifier might classify
an attack as irrelevant, favoring performance on the major-
ity class [18]. Previous work on imbalance in the security
domain has not focused on the effects of imbalance on
performance itself, but rather on perceived performance
through the choice of appropriate evaluations methods
(i.e., how imbalance may result in misleading performance
evaluations that are not representative of performance
in real-world usage scenarios) [11], [19]–[21]. Although
it is reasonable to assume that imbalance impacts ML
performance beyond misleading evaluations, it remains
unclear what the magnitude of the impact is and how
imbalance impacts performance compared to other dataset
characteristics such as dimensionality [22] or heterogene-
ity [23]. The robustness of post-processing methods on
highly imbalanced SOC data remains an open problem.

In this work, we study the effect of NIDS tuning
on (semi-)automated alert post-processing methods. One
recent method to automatically filter alerts is DeepCASE,
which has proven promising in initial evaluations [8].
In this paper, we take DeepCASE as a case-study to
evaluate the impact of data imbalance on post-processing
performance. Further, we also investigate the explainabil-
ity of post-processing methods, the lack of which can be
concerning [24].
Concretely, we make the following contributions.

• To the best of our knowledge, we are the first to
study the effects of imbalance on the post-processing
of security alerts using real SOC data.

• We find that current post-processing methods like Deep-
CASE might not be robust against high imbalance,
worsening classification performance and explanations.

• Further, our findings suggest that tuning is effective in
improving the quality of data input to these methods,
increasing classification performance and explainability.

First, we discuss the relevant background and related
work in Section 2. Then, we present the methodology of
our study in Section 3, and our findings in Section 4.

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/EuroSPW67616.2025.00009

https://doi.org/10.1109/EuroSPW67616.2025.00009

2

Finally, we discuss the implications and limitations of our
findings in Section 5 and conclude our work in Section 6.

2. Background and Related Work

In Section 2.1, we discuss the background on Deep-
CASE, the topic of our case-study on alert post-processing
in SOCs, and discuss related work on imbalance and
machine learning for intrusion detection in Section 2.2.

2.1. Background on DeepCASE

DeepCASE [8] belongs to the group of methods to
reduce SOC workloads through post-processing using ML
methods, and is designed to classify alerts to distinguish
attacks from FPs by evaluating alerts in the context of
preceding alerts regarding the same host (victim). To this
end, it uses two components: a context builder to encode
alerts and their context together into a sequence, and an
interpreter to cluster similar sequences. Clusters are man-
ually labeled, and new alerts close to an existing cluster
are automatically assigned the cluster label. The behavior
of both components can be tuned using hyperparameters
described in Table 2 of Appendix A. DeepCASE was
evaluated on the Lastline dataset, consisting of 10.5M
NIDS alerts from a real-world SOC, with 45.1k attacks.

The context builder is based on a Recurrent Neu-
ral Network (RNN) with attention mechanism [25], and
utilizes a sliding window to collect the context of each
alert. Preceding alerts are selected based on the involved
(victim) host and only within a fixed time window. The
events in the resulting sequence are represented by one-
hot encoding. The context builder then derives an attention
vector from the sequence that estimates how relevant the
context events are. To derive this attention vector, the RNN
is trained to predict alert ei given its context [e0, . . . , ei−1].
A confidence score associated with this prediction is used
as a parameter to decide whether the attention vector is
reliable enough to proceed with the classification.

After creating the attention vectors for the sequences,
DeepCASE’s interpreter clusters the sequences together
using both the attention vector and the context, which are
combined into a vector of total attention. The interpreter
uses DBSCAN [26] to cluster these vectors. After clus-
tering, a manual step is taken in which the clusters are
labeled by evaluating a sample of sequences assigned to
the cluster. Thereafter, a cluster and all sequences assigned
to it automatically receive the label of the sequence with
the highest risk. We note that similar contexts result in
similar vectors of total attention per event, which implies
that DeepCASE implicitly assumes that the contexts have
similar relevant contextual events and thus are likely to
have the same output label.

In addition to the labels assigned during the manual
cluster analysis, alerts can be classified into one of three
rejection labels. Firstly, it is possible that the confidence
of the context builder is insufficient to use a resulting
attention vector for clustering. Secondly, a sequence may
contain events of a type that was not present in the training
data. Lastly, vectors of total attention may be too far from
any cluster to be assigned a label. In all of these cases,
an analyst must manually classify the alert.

The attention vectors derived from the context builder
are argued to be useful for explaining DeepCASE’s au-
tomatic classification of alerts [8], providing insight into
DeepCASE’s internals. Nadeem et al. present a SoK study
on explainable AI for cybersecurity [24]. One of their
takeaways is that involving humans in the evaluation of the
quality of explanations is crucial, and that only 14% of the
reviewed literature performs such user studies. Before our
work, no evaluation of the correctness of the explanations
offered by DeepCASE had been carried out.

2.2. Related work

Several definitions for label imbalance and related
metrics exist, such as entropy. For this study, we use the
definition of Imbalance Ratio (IR) from Lorena et al. [27]
that generalizes to multi-class settings and is limited to the
interval [0..1) The definition of IR is given in Equation (1)
where nc is the number of classes, nci is the number of
samples in class i, and n is the number of samples in the
complete dataset. An IR close to 1 indicates an imbalanced
dataset, and an IR close to 0 indicates a balanced dataset.
To characterize typical IDS data, we note that the dataset
described by Yang et al. [5] has an IR of 1− 4e−6.

IR = 1− 1
nc−1
nc

∑nc

i=1
nci

n−nci

(1)

Recent work focuses on NIDS explainability [14] and
robustness, specifically against concept drift [11], [12]
(i.e., changes in data distributions) that can affect per-
formance. Some of these changes, such as those caused
by adversarial behavior, can be considered inherent to
the context in which IDS operate, like imbalance is to
the context in which post-processing methods operate [5].
Label imbalance is a phenomenon in which the relative
size of data classes differs significantly [27] and can
negatively affect ML performance [16], [17]. Similarly,
other data(set) characteristics such as dataset size [28],
heterogeneity [23], and dimensionality [22] can affect
performance. In this work, we study the robustness of
post-processing methods against label imbalance and also
relate this to the quality of explanations.

From the literature, we identify two semi-supervised
methods with a purpose similar to DeepCASE: (1)
NoDoze [29], and (2) AlertPro [10]. NoDoze ranks alerts
and relies on the assumption that rare events are anoma-
lous. Using contextual information, NoDoze constructs
large dependency graphs that include many FPs and thus
must merge paths with similar anomaly scores to re-
duce the number of irrelevant paths retrieved. AlertPro
uses a variety of features, some of which are extracted
from the context (i.e., surrounding alerts) to estimate the
risk associated with alerts. Previous research on SOC
workflows [7] has proposed that post-processing research
could benefit from improving or tuning detectors, as this
would improve the quality of the data used to train alert
classifiers. Since the tuning of rulesets involves disabling
noisy rules whilst not affecting low-noise rules, the pro-
portion of generated noise, and therefore the imbalance,
is reduced. In this study, we explore the effects of tuning
as a method for reducing imbalance and benefiting post-
processing methods.

3

Past research has examined work on ML methods and
datasets in the security domain and found several bad
practices that threaten the validity of research results.
Arp et al. [21] identified common pitfalls of ML in
computer security, of which most can affect the validity
of evaluations. Two notable pitfalls are spurious correla-
tions and data snooping. Spurious correlations refer to a
phenomenon by which features unrelated to the security
problem (e.g., resulting from the mixing of malicious
and benign data from different origins) artificially inflate
the performance of ML to be unreflective of real-world
performance. Data snooping is a pitfall that refers to ML
training using data that would normally be unavailable for
training (i.e., incorporation of test data into the training
set) and can lead to inflated performance due to unrealistic
‘foreknowledge’. They also mention the base rate fallacy,
stressing the importance of using metrics robust against
label imbalance for performance evaluation and their in-
terpretation but do not focus on the fundamental effects
on performance if suitable metrics were appropriately
interpreted. Other previous research also discussed the
impact of imbalance on perceived performance [11], [19],
[20], but, to the best of our knowledge, the impact on the
performance itself has not been studied yet, especially in
the context of ML approaches for alert post-processing
in SOCs. Flood et al. [30] focus specifically on bench-
mark dataset designs and their application. Liu et al. [23]
conducted a similar study on error prevalence in NIDS
datasets and found several problems in commonly used
datasets. Among the issues highlighted by all these works,
a common concern is the suitability of the data (i.e.,
realism, variety, volume, correctness). In this work, we
account for relevant pitfalls from these works and explore
effects of label imbalance on the performance itself using
suitable metrics.

3. Methodology

In order to study the effects of imbalance on the
classification performance and explainability of alert post-
processing methods, we devise an experimental method-
ology in which we build datasets that vary in imbalance
using data from a cooperating SOC and compare the
performance of DeepCASE on those datasets.
We address the following research questions.

RQ1 How does label imbalance affect the classification
performance of DeepCASE in the context of the
cooperating SOC?

RQ2 How does label imbalance affect the correctness of
the explanations offered by DeepCASE?

Our methodology accounts for several of the bad practices
described in Section 2.2 to mitigate adverse effects on the
validity of the research.

3.1. Data Provisioning

The cooperating SOC, monitoring several organiza-
tions using a combination of network- and host-based
intrusion detection systems, has made their data available

for this study1. The data shared were collected from
the network of an educational institution. The monitored
assets include institutional desktop computers and servers,
as well as personal devices in a Bring-Your-Own-Device
(BYOD) setting. We focus on Suricata [3] alerts the SOC
collected from network traffic. 2

The SOC dataset consists of 24.5M alerts generated
by 489 unique Suricata rules. It was collected over a
period of approximately five weeks between March 29 and
May 4, 2022. The alerts collected involve approximately
1.3k distinct hosts in the monitored environment. Due to
the lack of incidents during the collection period, none of
the alerts generated by the rules are related to security
incidents. Therefore, we use the same dataset as [31],
in which traffic from 10 replayed successful attacks is
integrated in the SOC dataset, generating 616 alerts. The
traffic captures are replayed in the SIEM environment in
such a way that they are indistinguishable from the live
traffic, in accordance with existing recommendations for
traffic injection [32]. Concretely, injected traffic consists
of both benign and malicious traffic that is mapped to
the same IP range as the existing traffic in the envi-
ronment. The introduction of this traffic is analogous to
the introduction of a new device in the BYOD setting
from which the SOC dataset is collected. All protocols
present in the injected traffic are also present in the SOC
dataset. The injection results in the same alerts raised by
the signature-based IDS as would otherwise have been
raised if the attack and benign traffic were exhibited by
a host in the environment where the SOC dataset was
collected. We manually asserted that no alerts were raised
that we believe to be the result of the manner in which
the attacks were injected by inspecting every alert raised
alongside the corresponding attack PCAP and verifying
that its trigger conditions are explainable by the nature
of the attacks and not due to the traffic not being part
of the monitored network. We also verify that the alert
timestamp coincides with the data collection period of
the SOC dataset, and the IP addresses are consistent with
the nature of the injected incident and the environment
whose data should be matched. Note that DeepCASE
is not concerned with low-level details of the injected
traffic since it operates on the level of the alerts, which
describe high-level security events in relation to hosts.
After injection, the 616 events are manually inspected and
all found to be related to the injected (successful) attack
scenarios. The collaborating SOC uses only two labels
for the data: Non-Incident and Incident, where
Incident alerts are alerts related to successful attacks
which should be escalated and Non-Incident alerts are
all alerts considered FPs or otherwise not worth escalating.

3.2. Experiment Design

Data preparations To prepare DeepCASE for the SOC
dataset, we perform hyperparameter optimization using
the first 1% of the sequences, similar to the original

1. Ethical considerations regarding the data handling have been pre-
approved by the research institution at the time of the instantiation
of the collaboration with the involved SOC and include usage of
(pseudo-)anonymized data to prevent identification of individuals.

2. A comparison with the Lastline dataset employed in DeepCASE is
provided in Table 5 of Appendix B.

4

work [8]. 3 The 99% of sequences chronologically fol-
lowing the optimization set is used as the experiment
set. The experiment set is further split into a train and
a test set, with 20% of the data in the train and 80% in
the test set. To increase DeepCASE chance at learning
and classifying the Incident alerts, we copy to the
training set some sequences from the Incident class
in the test set. DeepCASE would otherwise struggle since
all Incident alerts would be in the test set. To this
end, we randomly sample sequences from the test set
with the Incident label and copy them to the train set
until the percentages of Incident alerts in both sets
are similar. We consider this to be permissible since the
primary goal of this work is not to assess the performance
of DeepCASE w.r.t. the original evaluation, but to assess
the impact of imbalance on its performance, which is not
obscured. Although the incorporation of incidents from
the test set into the training set constitutes a form of
temporal data snooping that may artificially inflate perfor-
mance on the minority class, this is equally present in all
experiments we compare and therefore does not inhibit our
ability to study the effects of imbalance on DeepCASE.
We remind the reader that the goal of this research is not to
suggest the expected level of performance of DeepCASE
when deployed in real-world environments.

To study the effects of imbalance, we require datasets
that vary in IR. We create tuned datasets by simulating the
tuning process commonly employed by SOCs [7]: SOCs
commonly disable noisy rules to suppress alerts generated
by those rules. We reproduce various versions of the rule
filter that the SOC implemented after data collection. To
this end, we deactivate rules retroactively inline with the
SOC filter, and drop all alerts associated with selected
rules from the tuned datasets. According to the responsible
SOC engineers, the rule filter became more refined over
time, hence making datasets from more recent filters (High
IR + Medium IR) include fewer FPs. We generate an ad-
ditional dataset (Low IR) using more aggressive filtering,
whereby per-host rule filters are changed to global rule
filters to filter a rule not only for a single host but for
all hosts. Both filter methods are normally applied by the
SOC. Critically, rule filtering is a process that automated
methods such as DeepCASE should be able to cope with,
since rule filtering is a common low complexity practice
for SOCs to reduce analyst workloads and is considered
best practice in the literature [1]. All tuned datasets have
a label IR of a different order of magnitude, varying
between 1−5e−5 for the unfiltered dataset and 1−2e−2
for the low IR dataset.
Effects on classification performance The NIDS rule
adjustment process described in Section 3.1 results in
three datasets to evaluate the effect of the rule adjust-
ment process on classification performance. However, they
alone are insufficient to attribute any performance differ-
ence solely to label imbalance, because tuning also affects
other dataset characteristics that may simplify decision
boundaries. Therefore, we build four control datasets in

3. Details are provided in Appendix A. We reproduce DeepCASE
results in [8] with our dataset as described in Appendix B and con-
firm that the performance of DeepCASE is similar to the performance
reported for the Lastline dataset. We also perform a control experiment
(see Section C.1) using the default DeepCASE hyperparameters to verify
that the hyperparameter optimization was successful.

which we vary other characteristics that may affect per-
formance, to determine whether imbalance is indeed more
influential on classification performance than these other
characteristics (RQ1). We determine which characteristics
to control for by: (i) collecting a preliminary list from the
existing literature (see Section 2.2) and our understanding
of DeepCASE; (ii) completing the list by interviewing
authors of DeepCASE and (iii) ensuring that the identified
characteristics are indeed affected by the tuning process.
The four characteristics resulting from this process are:
(1) dataset size [28], (2) event imbalance (i.e., classes
are defined by event type instead of label), (3) context
heterogeneity [23] (i.e., number of unique context vectors
in the data) and (4) context builder input dimensional-
ity [22] (i.e., number of unique event types). In an effort to
prevent spurious correlations [21], we construct datasets
by retroactively removing rules, sequences, or alerts to
vary the identified factors, rather than injecting additional
events. Concretely, we randomly sample data points to
remove according to varying probabilities for each con-
trol dataset. These probabilities are derived from dataset
statistics (i.e., alert/context frequencies) to influence a
subset of all identified factors whilst maintaining others at
levels similar to those of the unfiltered or tuned datasets.
We generate control datasets for every tuned dataset to
match some of its properties and vary other characteristics.
These control processes and their effects on the identified
characteristics are further detailed in Appendix C. To
distinguish the effects of each controlled characteristic,
we run DeepCASE on the control datasets for each of the
high, medium, and low IR. Each run uses the hyperpa-
rameters obtained from the hyperparameter optimization
described in Appendix A. Each run is executed five times
to account for the stochasticity of neural network outputs.
Since the control datasets vary label imbalance, dataset
size, event imbalance, context hetetogeneity, and context
builder input dimensionality in manners uniquely distinct
from the tuning process, these allow us to attribute perfor-
mance improvements to specific properties of the dataset
such as imbalance.

To analyze the effect of the IR on classification per-
formance, we use a combination of descriptive statistics
and regression analysis. We use a robust linear model to
assess which characteristic most significantly affects clas-
sification performance. To account for scale differences
between variables, all variables are scaled to have mean
0 and standard deviation 1. To ensure that no collinear
variables are used in the regression, we compute the
Variance Influence Factor (VIF) and remove any variables
with a VIF greater than 10 [33]–[35] from the regression.
We report statistical significance for each estimated effect
size from a t-test; p-values below 0.05 are considered sig-
nificant. In addition, we use a Kolmogorov-Smirnov (KS)
Test as a goodness-of-fit test to understand how much
variance can be explained by the model [36]. Rejection of
the null hypothesis (H0) of a KS-test implies poor fit. The
KS test is chosen over the usual R2 due to its robustness
against outliers.
Effects on correctness of explanations To assess the
correctness of DeepCASE’s explanations (RQ2), we asked
an expert from the collaborating SOC to indicate relevance
of each contextual event (range [0, 1]) to the investigated
alert (i.e. manually replicating DeepCASE’s ‘explanation’

5

of its classification). Considering the large size of the
dataset, we build this baseline only for Incident alerts,
labelling hundreds of contexts. To validate the correctness
of the expert-labeled vectors, a researcher executes the
same task, after which we validate the vectors of the
expert using the secondary labeling conducted by another
expert, as described in Appendix D. Both experts rely
solely on the same sequences of alert messages that are
presented to DeepCASE but may interpret them using tacit
knowledge [37] from their experience working with SOCs.
After confirming high agreement between the experts, the
labeling of the first expert is kept as ground truth to
evaluate DeepCASE.

We compare the expert explanations with Deep-
CASE’s explanations for the unfiltered and tuned datasets.
By examining the cumulative distributions of similarities
between explanations of different raters (i.e., DeepCASE
and an expert) over these datasets, we can infer the
effect of label imbalance on the correctness of Deep-
CASE’s explanations. We group individual runs belonging
to the same dataset together to obtain a single distribution
of similarities for each dataset/rater. Note that we do
not leverage the control datasets to assess the effect on
explainability since the sequences manually labeled by
experts can include different events and require a new
manual labeling for every run of a control dataset, leading
to an unreasonable amount of work.

3.3. Metrics

Classification performance metrics In the original work
precision and recall (PR) are used to evaluate, respec-
tively, how many classifications are correct and how many
classified alerts are classified correctly. The F1-score com-
bines precision and recall into a single metric using a har-
monic mean. One common method to calculate PR scores
is micro-averaging, in which equal weight is assigned
to every alert. Alternatively, when macro-averaging, the
PR scores are computed separately for each class, af-
ter which the per-class scores are combined with equal
weight. The macro F1-score is a more informative metric
in highly imbalanced environments where the minority
class performance is (more) important than the majority
class performance. Thus, we use the macro F1-score for
hyperparameter optimization to encourage DeepCASE to
perform well on the minority class.

To reproduce and compare with the original results,
we follow the same approach when calculating the macro
F1-score. However, we observe that rejected alerts impact
SOC operations as those alerts must be analyzed manually,
and hence contribute to workload. Therefore, we develop
an alternative metric, the relaxed F1-score, to capture this.
The relaxed precision and recall, respectively, evaluate
how many alerts are correctly presented and how many
interesting alerts are presented to an analyst. Contrary to
the original work, we consider rejected Incident alerts
as True Positive (TP) (because worthy of analysis from
a human analyst) and consider rejected Non-Incident
alerts as FP (because they waste analyst time). For all
other possible alerts/classifications, the definition of TP/FP
remains identical to that from the original work [8]. Note
that we do not change how the PR is computed, but
only the definition of what constitutes a TP/FP to better

capture the alert classification’s impact on the analyst
workload. As a result, rejected Non-Incident alerts
reduce precision, and rejected Incident increase pre-
cision and recall. The relaxed F1-score therefore more
accurately reflects operational impact of post-processing
and is therefore used to assess the effects of data charac-
teristics like imbalance on the classification performance
(e.g., regression).
Correctness of explanations metrics To assess the cor-
rectness of explanations, we need to compare explanations
(i.e,, vectors of total attention) from different raters (e.g.,
expert or DeepCASE). In line with common practice, we
use cosine similarity to compare vectors due to the well-
understood semantics of the cosine similarity, resulting in
a score in the range [0, 1]4 [38]. If the cosine similarity is
close to 1, then the vectors of total attention are similar,
and raters agree on the correct explanation. If the cosine
similarity is close to 0, then the vectors indicate different
relevant events, and raters disagree on the explanation.

4. Results

We discuss the effects on classification performance
in Section 4.1 after which we turn to the effects on the
correctness of the explanations in Section 4.2.

4.1. Classification performance

Figure 1 shows the relaxed F1-score. Our first ob-
servation is that the performance of DeepCASE for the
tuned datasets (IR Experiments) is higher than that in the
hyperparameter control experiment, especially for the low
IR dataset. This suggests that hyperparameter optimization
was indeed successful in tweaking DeepCASE’s perfor-
mance on alternate data. For the various tuned datasets,
and also for most control experiments, we observe a clear
pattern by which DeepCASE obtains higher relaxed F1
scores on Low- and Medium-IR datasets, suggesting that
a lower IR, as a result of enhanced ruleset tuning, leads to
higher classification performance. Table 7 (Appendix E)
shows the confusion matrix for the unfiltered and tuned
datasets. From this confusion matrix, we can see that
the Low- and Medium-IR datasets succeed in retrieving
more relevant Incident alerts, and more importantly,
retrieve less irrelevant Non-Incident alerts, which for
the High-IR and unfiltered datasets were shown more of-
ten to analysts because they were rejected by DeepCASE.

One notable outlier is the performance on the Filtering
Method control dataset. We attribute this outlier to a
significant decrease in heterogeneity due to the filtering
approach. Upon inspection of the confusion matrix, shown
in Table 8 (Appendix E), we observe that DeepCASE
rejects fewer Incident alerts, likely due to a decrease
in data complexity that makes the problem addressed by
DeepCASE less complex. This decrease in data complex-
ity is further detailed in Section C.3 (Appendix C). Con-
cretely, the control dataset has a lower heterogeneity and
dimensionality compared to the tuned datasets. We note
that the performance of DeepCASE on the control datasets
is not necessarily representative of the performance that

4. The minimum cosine similarity is 0 instead of −1 because the
vectors of total attention are non-negative and thus cannot be antiparallel.

6

IR Experiment
Hyperparameters

Filtering Method
Dimensionality

Heterogeneity
Dataset Size

Experiment

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
xe

d
F1

-S
co

re
Unfiltered
High IR
Medium IR
Low IR

Figure 1. Relaxed F1-score for all experiments. Each point represents
the relaxed F1-score for one run.

TABLE 1. REGRESSION RESULTS SHOWING THE EFFECT SIZE OF
VARIOUS CHARACTERISTICS ON THE RELAXED F1-SCORE USING A

ROBUST LINEAR MODEL.

Dimension Coefficient Confidence Interval P -value

Constant 0.09 [0.07, 0.10] < 0.01
Label IR −1.03 [−1.04,−1.02] < 0.01
Dataset Size −0.01 [−0.01, 0.03] 0.24
Heterogeneity −0.04 [−0.06,−0.03] < 0.01
Unique Events 0.01 [−0.01, 0.03] 0.27

N.obs. 80
KS Test 0.13 0.15

could be obtained by DeepCASE in practice, but it does
serve a purpose in assessing the effect of the characteris-
tics of the data on the classification performance.

To attribute differences in performance to imbalance,
we use regression over the various controlled characteris-
tics following the methodology described in Section 3.2.
The outcome is shown in Table 1. The event IR, was
dropped from the regression due to its VIF exceeding
the threshold we set. The test statistic of the KS-test is
0.13 and the corresponding p-value is 0.15. Given the
p-value, we fail to reject H0 and lack indications that
the model poorly explains the performance differences
between the various datasets. The test statistic indicates
that the cumulative distribution function resulting from
the regression is at most 0.13 off from the cumulative
distribution function of true relaxed F1-score, suggesting
a non-negligible portion of the effect is successfully ex-
plained by the model.

The significant regression coefficients inform on char-
acteristics that significantly influence the relaxed F1-score.
We conclude the label IR appears to have the largest
impact with a coefficient of −1.03, compared to the other
characteristics we control for. Hence, the relaxed F1-score
is higher for datasets with a lower label IR. The rest of the
characteristics appear to have little or inconclusive effect
on the relaxed F1-score, with coefficients between −0.04
and 0.01. However, heterogeneity appears to have a small
but significant effect, where a reduction in heterogeneity
leads to a small improvement of the relaxed F1-score. To
contextualize this, we note that the effect size of context
heterogeneity on DeepCASE’s performance is less than
5% of the effect size of label imbalance.

4.2. Explainability

The cumulative distributions of the cosine similarities
between the vectors of total attention per event provided
by DeepCASE and the ground truth for the tuned datasets

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Vectors of Total Attention per Event for Interesting Alerts

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

be
tw

ee
n

Ve
ct

or
s o

f T
ot

al
At

te
nt

io
n

pe
r E

ve
nt

 a
nd

 G
ro

un
d

Tr
ut

h Unfiltered
High IR
Medium IR
Low IR

Figure 2. Cumulative distribution plots of the cosine similarity comparing
of explanations from DeepCASE and the expert for the unfiltered and
tuned datasets.

are shown in Figure 2. We see that approximately 25%
of the vectors of total attention per event is identical to
the ground truth and about 50% of the vectors per event
have a cosine similarity of 0.75 or higher, suggesting
high similarity. However, about 30% of the vectors have a
cosine similarity of 0.25 or lower for the unfiltered dataset,
suggesting DeepCASE provides incorrect explanations for
these alerts.

As we compare the unfiltered set to the tuned sets
with different IR, we observe that the vectors provided by
DeepCASE on the tuned datasets are usually more similar
to the expert rating. Interestingly, the vectors from the
Low-IR dataset also appear to outperform those from the
High-IR dataset, which was also tuned to some extent.
Hence, we conclude that ruleset tuning effectively assists
DeepCASE in providing correct explanations.

5. Discussion

We focus on DeepCASE as a case-study for the
broader class of alert post-processing methods in the
context of SOCs. To support this, we compare DeepCASE
with two related methods: (1) NoDoze [29], and (2) Alert-
Pro [10]. DeepCASE, NoDoze, and AlertPro all use infor-
mation from surrounding alerts, similar to what analysts
would do [4]. NoDoze employs mitigation methods, such
as merging paths with similar anomaly scores, to reduce
the number of irrelevant paths retrieved using a threshold
to decide on the similarity of anomaly scores. Similarly
to DeepCASE, where frequently occurring alerts can evict
relevant alerts from contexts, in AlertPro excessive alerts
can suppress relevant information from other alerts in the
analyzed contexts. Thus, both NoDoze and AlertPro rely
on methods that are prone to the effects of label imbalance,
similar to DeepCASE.
Implications. Although it is well known that imbalance
can negatively affect ML performance [39], prior to this
work it was unclear what magnitude of this effect is in
the context of network intrusion detection. The results of
Section 4.1 indicate that label imbalance is, by far, the
most important factor for the performance of DeepCASE.
Regression over results derived from the datasets con-
trolling for other characteristics that may affect decision
boundaries shows that label imbalance outweighs other
factors such as the size of the dataset or the heterogeneity
of the sequences.

We envision two directions to increase robustness
of alert post-processing methods such as DeepCASE in

7

light of the imbalance inherent to the network intrusion
detection domain: (1) reducing the imbalance in the data
provided as input to such methods; and (2) making such
methods more robust against imbalance. Tuning rule-
sets [7] and increasing the quality of IDS rules are exam-
ples in the first direction. Researchers in the ML domain
have already made steps towards the second direction by
applying methods such as focal loss [40], cost-sensitive
learning [18], or by applying different methods for pre-
processing alert data (e.g., constructing sequences).

Regardless of whether post-processing methods are
used, deterministic alternatives can be utilized to reduce
SOC workloads. Ruleset tuning has been discussed as a
method to improve the performance of DeepCASE, but
also reduces the number of irrelevant alerts by 99.6%,
without the application of other post-processing methods.
Hence, research on more traditional methods can still
benefit ML methods for SOCs.

During our experiments, we computed various perfor-
mance metrics, including the micro- and macro-averaged
F1-scores in addition to the relaxed F1-score used in
Section 4.1. Some metrics like micro F1-score would not
show significant differences even though the performance
on the minority class was significantly affected. In light of
the high imbalance, which is common in NIDS research,
and the relative importance of the minority class, we con-
sider micro-averaging inadequate for assessing NIDS or
alert post-processing systems and encourage researchers
to use appropriate performance measures [21] that account
for the imbalance and differences in cost associated with
misclassifications between classes. We also encourage re-
searchers to use robust metrics that account for rejection
classes in a manner corresponding to the intended appli-
cation context of the systems.

Previous research has stressed the importance of user
studies in evaluating the explainability of decision support
tools [24]. The original work on DeepCASE suggested
that vectors of total attention per event can serve as
an explanation but has not evaluated its quality in that
context. In Section 4.2 we make a first step towards
evaluating the explainability of DeepCASE by involving
two experts. Our results show that the classification for
a non-negligible portion of vectors of total attention are
poorly explained by DeepCASE. However, a reduction of
the label imbalance through tuning resulted in a promising
improvement in explanation correctness. Further research
on the robustness of post-processing methods in the pres-
ence of imbalance can therefore enhance interpretability
of these methods and encourage trust in SOC automation.
Threats to validity. Data realism and representativeness
are important issues [21] and past research has raised
concerns regarding the generation of benchmark datasets,
specifically through artificial means [30], [32]. Since the
methods described in Section 3.2 and Appendix C intro-
duce no new data, artificial diversity or incorrect labels
have not been introduced in the tuned datasets. We believe
that injection of attack traffic as described in Section 3.1
and incorporation of test data into the training set as de-
scribed in Section 3.2 have not led to spurious correlations
or data snooping threatening the validity of our conclu-
sions. These pitfalls would artificially inflate the perfor-
mance on the minority class, whereas the performance on
the minority class remains distinctly lower than on the ma-

jority class, as shown in Table 7 (Appendix E). Moreover,
these pitfalls are present equally in all performed experi-
ments and do therefore not prevent comparisons between
performance on different datasets to assess the effects of
imbalance, although the mentioned performance need not
be reflective of real-world deployments. Note that datasets
generated by means other than mere collection or tuning
may not be representative of the real world but serve their
purpose well in assessing the impact of effects in the
data on the performance of alert post-processing methods.
Therefore, the results of our control datasets should not be
interpreted as reflecting real-world performance but only
relative to the results on the datasets with different IR.
The choice of appropriate metrics in light of imbalanced
data [21] has been addressed in Section 3.3.

We believe to have optimized DeepCASE well for the
presence of label imbalance using the macro F1-score.
Thereafter, we have used the relaxed F1-score, since it is
considered more representative of the problem that a SOC
would address using DeepCASE. Although the macro F1-
score used to optimize hyperparameters and the relaxed
F1-score used to evaluate DeepCASE’s performance are
different, the macro and relaxed F1-scores are statistically
correlated. Therefore, we deem it unlikely that optimizing
for the macro F1-score has negatively affected conclusions
drawn based on results using the relaxed F1-score. When
comparing the macro F1-scores shown in Figure 3 (Ap-
pendix B) and the relaxed F1-scores shown in Figure 1,
we observe that both metrics rank the performance of
DeepCASE similarly for the different levels of imbalance
for each of the tuned and control datasets used in the
regression from Section 4.1. We consider the relaxed F1-
score to be more indicative of real-world performance and
operational implications, since it accounts for the impact
of alerts rejected (i.e., unclassified) by DeepCASE on time
spent investigating by security analysts.

The regression presented in Section 4.1 shows a signif-
icant effect on the relaxed F1-score, despite the absence of
other variables that we aimed to control for due to the high
collinearity of those variables. Since event IR and label
IR are correlated, it is possible that (part of) the effect of
label IR in the regression is actually the result of event IR
instead. Despite this ambiguity, we remain confident that
imbalance, be it event or label, has a significant effect on
the classification performance.

Since expert 1 and expert 2 agreed with each other
about as much as DeepCASE agreed with expert 1, we
cannot draw strong conclusions from the correctness of
DeepCASE’s explanations. From feedback acquired from
the experts on the provided explanations, the experts
struggled the most with the ambiguous interpretation of
attention assigned to events in the input sequence when no
relevant events exist in the input sequence. Explanations
offered by DeepCASE therefore remain a topic requiring
future research, as it apparently is not trivial for experts
to agree on what constitutes correct explanations.

6. Conclusion

In this work, we evaluated the effect of label imbalance
on DeepCASE and showed that classification performance
increases when label imbalance is reduced as a result
of tuning. Furthermore, we evaluated the correctness of

8

explanations offered, and found that the correctness also
improves by tuning. We found that tuning of rules in SOCs
can reduce the imbalance and can effectively improve clas-
sification performance and correctness of explanations of-
fered by alert post-processing methods like DeepCASE.

Data Availability

To promote reproducibility, we archive an anonymized
copy of the SOC dataset, the code used to create the tuned
datasets and control datasets, and the code used to run and
evaluate DeepCASE’s performance at our institution. The
archived dataset and the code used in this research can be
shared upon request with interested researchers.

Acknowledgment

Parts of this work were derived from a prior M.Sc.
graduation project [41]. The authors thank the unnamed
SOC for their cooperation and for making data available
for analysis, and Thijs van Ede discussing DeepCASE
with us. This publication is part of the CATRIN,
INTERSECT, and SeReNity projects (with numbers
NWA.1215.18.003, NWA.1160.18.301, and CS.010) which
are (partly) financed by the Dutch Research Council
(NWO). For the purpose of Open Access, a CC-BY 4.0
public copyright license is applied to any Author Accepted
Manuscript version arising from this submission.

References

[1] K. Knerler, I. Parker, and C. Zimmerman, 11 Strategies of
a World-Class Cybersecurity Operations Center, 2022. [On-
line]. Available: https://www.mitre.org/news-insights/publication/
11-strategies-world-class-cybersecurity-operations-center

[2] M. Vielberth, F. Bohm, I. Fichtinger, and G. Pernul, “Security
operations center: A systematic study and open challenges,” IEEE
Access, vol. 8, p. 227756–227779, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.3045514

[3] Open Information Security Foundation, “Suricata,” Novem-
ber 2024. [Online]. Available: https://web.archive.org/web/
20241001122450/https://suricata.io/

[4] L. Kersten, T. Mulders, E. Zambon, C. Snijders, and L. Allodi,
“’give me structure’: Synthesis and evaluation of a (network)
threat analysis process supporting tier 1 investigations in
a security operation center,” in Nineteenth Symposium on
Usable Privacy and Security (SOUPS 2023). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 97–111. [Online]. Available:
https://www.usenix.org/conference/soups2023/presentation/kersten

[5] L. Yang, Z. Chen, C. Wang, Z. Zhang, S. Booma, P. Cao,
C. Adam, A. Withers, Z. Kalbarczyk, R. K. Iyer, and
G. Wang, “True attacks, attack attempts, or benign triggers?
an empirical measurement of network alerts in a security
operations center,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 1525–1542. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity24/presentation/yang-limin

[6] K. Teuwen, T. Mulders, E. Zambon, and L. Allodi, “Ruling
the unruly: Designing effective, low-noise network intrusion
detection rules for security operations centers,” in Proceedings
of the 2025 ACM on Asia Conference on Computer and
Communications Security. New York, NY, USA: Association
for Computing Machinery, Inc, 2024. [Online]. Available:
https://doi.org/10.1145/3708821.3710823

[7] M. Vermeer, N. Kadenko, M. van Eeten, C. Gañán, and S. Parkin,
“Alert alchemy: Soc workflows and decisions in the management of
nids rules,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security. New York, NY,
USA: Association for Computing Machinery, 2023, p. 2770–2784.
[Online]. Available: https://doi.org/10.1145/3576915.3616581

[8] T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova,
A. Continella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna,
“DeepCASE: Semi-Supervised Contextual Analysis of Security
Events,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P). IEEE, 2022.

[9] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omega-
log: High-fidelity attack investigation via transparent multi-layer
log analysis,” in Network and distributed system security sympo-
sium, 2020.

[10] X. Wang, X. Yang, X. Liang, X. Zhang, W. Zhang, and X. Gong,
“Combating alert fatigue with alertpro: Context-aware alert
prioritization using reinforcement learning for multi-step attack
detection,” Computers & Security, vol. 137, p. 103583, 2024.
[Online]. Available: https://doi.org/10.1016/j.cose.2023.103583

[11] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice,
and L. Cavallaro, “Insomnia: Towards concept-drift robustness in
network intrusion detection,” in Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security. New York, NY,
USA: Association for Computing Machinery, 2021, p. 111–122.
[Online]. Available: https://doi.org/10.1145/3474369.3486864

[12] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro,
“Transcending transcend: Revisiting malware classification in the
presence of concept drift,” in 2022 IEEE Symposium on Security
and Privacy (SP), 2022, pp. 805–823. [Online]. Available:
https://doi.org/10.1109/SP46214.2022.9833659

[13] D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang, H. Zhang,
Z. Wang, M. Jin, J. Yang, X. Shi, and X. Yin, “Anomaly detection
in the open world: Normality shift detection, explanation, and adap-
tation,” in 30th Annual Network and Distributed System Security
Symposium, NDSS 2023, San Diego, California, USA, February 27
- March 3, 2023. The Internet Society, 2023.

[14] F. Wei, H. Li, Z. Zhao, and H. Hu, “xNIDS: Explaining
deep learning-based network intrusion detection systems for
active intrusion responses,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association,
Aug. 2023, pp. 4337–4354. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity23/presentation/wei-feng

[15] M. Vermeer, M. van Eeten, and C. Gañán, “Ruling the rules:
Quantifying the evolution of rulesets, alerts and incidents in
network intrusion detection,” in Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security.
New York, NY, USA: Association for Computing Machinery,
2022, p. 799–814. [Online]. Available: https://doi.org/10.1145/
3488932.3517412

[16] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner, “Detecting
credential spearphishing attacks in enterprise settings,” Proc. of
26th USENIX Security, 2017.

[17] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review
on imbalanced data challenges in machine learning: Applications
and solutions,” ACM Comput. Surv., vol. 52, no. 4, Aug. 2019.
[Online]. Available: https://doi.org/10.1145/3343440

[18] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera,
“An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics,”
Information Sciences, vol. 250, pp. 113–141, 2013. [Online].
Available: https://doi.org/10.1016/j.ins.2013.07.007

[19] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 3, p. 186–205, 8
2000. [Online]. Available: https://doi.org/10.1145/357830.357849

[20] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro, “TESSERACT: Eliminating experimental bias
in malware classification across space and time,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 729–
746. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury

https://www.mitre.org/news-insights/publication/11-strategies-world-class-cybersecurity-operations-center
https://www.mitre.org/news-insights/publication/11-strategies-world-class-cybersecurity-operations-center
https://doi.org/10.1109/ACCESS.2020.3045514
https://web.archive.org/web/20241001122450/https://suricata.io/
https://web.archive.org/web/20241001122450/https://suricata.io/
https://www.usenix.org/conference/soups2023/presentation/kersten
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-limin
https://doi.org/10.1145/3708821.3710823
https://doi.org/10.1145/3576915.3616581
https://doi.org/10.1016/j.cose.2023.103583
https://doi.org/10.1145/3474369.3486864
https://doi.org/10.1109/SP46214.2022.9833659
https://www.usenix.org/conference/usenixsecurity23/presentation/wei-feng
https://www.usenix.org/conference/usenixsecurity23/presentation/wei-feng
https://doi.org/10.1145/3488932.3517412
https://doi.org/10.1145/3488932.3517412
https://doi.org/10.1145/3343440
https://doi.org/10.1016/j.ins.2013.07.007
https://doi.org/10.1145/357830.357849
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury

9

[21] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts of
machine learning in computer security,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 3971–3988. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/arp

[22] M. Verleysen and D. François, “The curse of dimensionality in data
mining and time series prediction,” in Computational Intelligence
and Bioinspired Systems, J. Cabestany, A. Prieto, and F. Sandoval,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
758–770.

[23] L. Liu, G. Engelen, T. Lynar, D. Essam, and W. Joosen, “Error
prevalence in nids datasets: A case study on cic-ids-2017 and
cse-cic-ids-2018,” in 2022 IEEE Conference on Communications
and Network Security (CNS), 2022, pp. 254–262. [Online].
Available: https://doi.org/10.1109/CNS56114.2022.9947235

[24] A. Nadeem, D. Vos, C. Cao, L. Pajola, S. Dieck, R. Baumgartner,
and S. Verwer, “Sok: Explainable machine learning for computer
security applications,” in 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), 2023, pp. 221–240. [Online].
Available: https://doi.org/10.1109/EuroSP57164.2023.00022

[25] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism
of deep learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.
[Online]. Available: https://doi.org/10.1016/j.neucom.2021.03.091

[26] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[27] A. C. Lorena, L. P. F. Garcia, J. Lehmann, M. C. P.
de Souto, and T. K. Ho, “How complex is your classification
problem? A survey on measuring classification complexity,”
CoRR, vol. abs/1808.03591, 2018. [Online]. Available: http:
//arxiv.org/abs/1808.03591

[28] J. Prusa, T. M. Khoshgoftaar, and N. Seliya, “The effect of
dataset size on training tweet sentiment classifiers,” in 2015
IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), 2015, pp. 96–102. [Online]. Available:
https://doi.org/10.1109/ICMLA.2015.22

[29] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and
A. Bates, “Nodoze: Combatting threat alert fatigue with automated
provenance triage,” in network and distributed systems security
symposium, 2019.

[30] R. Flood, G. Engelen, D. Aspinall, and L. Desmet, “Bad
design smells in benchmark nids datasets,” in 2024 IEEE
9th European Symposium on Security and Privacy (EuroS&P),
2024, pp. 658–675. [Online]. Available: https://doi.org/10.1109/
EuroSP60621.2024.00042

[31] L. Kersten, T. Mulders, E. Zambon-Mazzocato, C. Snijders, and
L. Allodi, “’give me structure’: Synthesis and evaluation of a
(network) threat analysis process supporting tier 1 investigations
in a security operation center,” in Proceedings of the 19th Sym-
posium on Usable Privacy and Security, SOUPS 2023. Usenix
Association, Aug. 2023, pp. 97–111, 19th Symposium on Usable
Privacy and Security, SOUPS 2023, SOUPS 2023 ; Conference
date: 07-08-2023 Through 08-08-2023.

[32] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an
intrusion detection dataset: the cicids2017 case study,” in 2021
IEEE Security and Privacy Workshops (SPW). IEEE, 2021, pp.
7–12.

[33] B. K. Slinker and S. A. Glantz, Primer of applied regression and
analysis of variance. McGraw-Hill, 1990.

[34] G. S. Maddala and K. Lahiri, Introduction to econometrics.
Macmillan New York, 1992, vol. 2.

[35] J. B. Gray, “Regression with graphics: A second course in applied
statistics,” 1994.

[36] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253,
pp. 68–78, 1951.

[37] S. Y. Cho, J. Happa, and S. Creese, “Capturing tacit knowledge in
security operation centers,” IEEE Access, vol. 8, pp. 42 021–42 041,
2020.

[38] R. Connor, “A tale of four metrics,” in Similarity Search and
Applications, L. Amsaleg, M. E. Houle, and E. Schubert, Eds.
Cham: Springer International Publishing, 2016, pp. 210–217.

[39] M. S. Santos, P. H. Abreu, N. Japkowicz, A. Fernández, and
J. Santos, “A unifying view of class overlap and imbalance: Key
concepts, multi-view panorama, and open avenues for research,”
Information Fusion, vol. 89, p. 228–253, Jan. 2023. [Online].
Available: https://doi.org/10.1016/j.inffus.2022.08.017

[40] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2999–3007.
[Online]. Available: https://doi.org/10.1109/ICCV.2017.324

[41] S. Baggen, “Deepdive: Evaluating deepcase on dataset
imbalance & validity of explanations,” Master’s
thesis, Mathematics and Computer Science, 2024.
[Online]. Available: https://research.tue.nl/en/studentTheses/
deepdive-evaluating-deepcase-on-dataset-imbalance-validity-of-exp

[42] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.” Journal of machine learning research, vol. 13, no. 2,
2012.

Appendix A.
Hyperparameter optimization

DeepCASE has several hyperparameters that can be
optimized as discussed in Section 2.1 and detailed in
Table 2. The first 1% of the dataset that is selected only
for hyperparameter optimization and is excluded from the
remaining runs. Within this 1% of the data, we make a
50/50 split to obtain train and test sets for hyperparameter
optimization. Similar to the approach described in Sec-
tion 3, we copy over Incident samples from the test
set to the train set until both sets have similar proportions
of Incident alerts.

The optimal parameters are selected using random grid
search, where a point on the grid is randomly selected
for trial, combining the advantages of grid search and
manual search [42] while avoiding an excessively large
search space. Contrary to the original work, we optimize
the macro F1-score instead of the micro F1-score [8] to
favor performance on the minority class.

The hyperparameter optimization experiment is run
before any data analysis is performed. Every time the
dataset presented to DeepCASE changes, we first run
a hyperparameter optimization experiment. This ensures
DeepCASE can perform optimally for the dataset, such
that the conclusions we reach from the data analysis are
independent of the chosen hyperparameters, considering
the optimal hyperparameters are typically different when
a model is deployed on different data.

For discovering suitable hyperparameter values, we
use random search on a grid with a limit on the amount
of possible trials to find the optimal performing set of
hyperparameters. The hyperparameters and their possible
choices are shown in Table 3. Random search is chosen
because it generally outperforms grid search in both the
time spent on computations and the performance of the
model [42]. However, if we rely purely on random search
with the upper bound and lower bound of each parameter
set to the highest and lowest values in the original paper,
then the possible search space is so large (409 600 000
combinations) that an excessive number of trials would be
required. Considering the required time and hardware, as
well as the potential impact on the environment, we reduce

https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1109/CNS56114.2022.9947235
https://doi.org/10.1109/EuroSP57164.2023.00022
https://doi.org/10.1016/j.neucom.2021.03.091
http://arxiv.org/abs/1808.03591
http://arxiv.org/abs/1808.03591
https://doi.org/10.1109/ICMLA.2015.22
https://doi.org/10.1109/EuroSP60621.2024.00042
https://doi.org/10.1109/EuroSP60621.2024.00042
https://doi.org/10.1016/j.inffus.2022.08.017
https://doi.org/10.1109/ICCV.2017.324
https://research.tue.nl/en/studentTheses/deepdive-evaluating-deepcase-on-dataset-imbalance-validity-of-exp
https://research.tue.nl/en/studentTheses/deepdive-evaluating-deepcase-on-dataset-imbalance-validity-of-exp

10

TABLE 2. OVERVIEW OF DEEPCASE’S HYPERPARAMETERS.

Hyperparameter Function

Context Length (n) Maximum amount of events considered to be part of the context.
Context Timeout (t) Maximum duration between an event and the corresponding alert for the event to be considered part of

the context.
Context Builder Hidden Nodes Amount of nodes that are part of the hidden layer of the context builder’s neural network.
δ (Label Smoothing Regularization) Adjustment of target output label probabilities during training of context builder.
τconfidence (Confidence Threshold) Minimum confidence required before an attention vector and the vector of total attention per event is

used in the clustering algorithm.
ϵ (DBSCAN Maximum Distance) Maximum distance between vectors of total attention where the DBSCAN algorithm considers the

different vectors to be part of the same cluster.
Minimum Cluster Size Minimum amount of vectors required to be considered a cluster, all within a maximum distance of ϵ.

TABLE 3. POSSIBLE VALUES FOR DEEPCASE’S
HYPERPARAMETERS.

Hyperparameter Possible values

Context Length (n) 10, 15, 20
Context Timeout (t) 1 day, 1 week, 1 month
Context Builder Hidden Nodes 32, 64, 128
δ (Label Smoothing Regularization) [0, 1] with steps of 0.05
τconfidence (Confidence Threshold) [0.05, 1] with steps of 0.05
ϵ (DBSCAN Maximum Distance) [0.05, 1] with steps of 0.05
Minimum Cluster Size 5, 10, 20, 50

the amount of possible combinations by randomly sam-
pling from a grid, combining the advantages of random
search with applying domain knowledge to ensure random
search will avoid insensible parameters like a sequence
length of 1. This approach significantly reduces the search
space (779 760 combinations), making hyperparameter op-
timization feasible. The resulting optimal hyperparameters
for each of the different sets are shown in Table 4.

Appendix B.
Reproduction

To further support the interpretation of our exper-
iments and enable comparison with other datasets, we
describe the relevant aspects of the data and make a
comparison with the dataset used by Van Ede et al. [8].
Respectively, we refer to these datasets as the SOC and
Lastline datasets and their comparison is summarized in
Table 5.

The SOC dataset contains twice the amount of fired
alerts and nearly two times more distinct rules compared
to the Lastline dataset, generated from less than 300
times as many hosts, and was gathered during a shorter
time period. Based on these numbers, it seems that the
environment from which the SOC dataset originates raises
more FPs than that of the Lastline dataset, an observation
explained by the fact that the rules used by the Suricata
sensor generating the alerts had not been tuned by the
cooperating SOC. This also implies that the SOC dataset
has a higher imbalance and offers more complexity to
post-processing methods such as DeepCASE.

We have opted to use only two labels for the
SOC data:Non-Incident and Incident, where
Incident alerts are alerts related to successful attacks
and Non-Incident alerts are all alerts considered FPs.
In the original work, DeepCASE was used to estimate
threat levels associated with alerts, which can be consid-
ered a generalization of the task for which we employ it:
distinguishing successful from unsuccessful attacks. Our
less granular labeling presents DeepCASE with a less
complex task.

One may raise concerns about the difference in the
number of incidents between the Lastline dataset and the
dataset used in this work. We attribute this to a difference
in the interpretation of what constitutes an incident and
the corresponding labeling methodology. The cooperating
SOC labels an alert as an attack if it is related to a ma-
licious action that is successful. Therefore, the SOC does
not consider alerts related to malicious but unsuccessful
actions as attacks. We suspect that in the Lastline dataset,
the label ATTACK might also have been given to malicious
but unsuccessful actions. As a result, the SOC dataset is
more imbalanced. This high imbalance is in line with a
previous characterization of SOC data [5], whose dataset
was collected over four years from a real-world SOC and
contained 115 million alerts and only 227 attacks, where
their definition of “attack” aligns with ours.

As shown in Figure 3 (note the Figure also contains
results on the control datasets described in Appendix C),
the unfiltered dataset has a mean macro F1-score of 0.502
for the IR experiment. We note that the Macro F1-scores
obtained in the original work 5 are similar to the Macro
F1-scores obtained in this work. Thus, the performance of
DeepCASE on the Lastline and SOC datasets is compa-
rable despite differently defined attacks.

IR Experiment
Hyperparameters

Filtering Method
Dimensionality

Heterogeneity
Dataset Size

Experiment

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

xe
d

F1
-S

co
re

Unfiltered
High IR
Medium IR
Low IR

Figure 3. Macro F1-score for All Experiments. Each point represents the
Macro F1-score of one run.

Looking at the confusion matrix for the unfiltered
dataset in Table 7 of Section E, we can see that nearly all
Non-Incident alerts are classified correctly, whereas
nearly all Incident alerts are rejected. Among the few
classified Incident alerts, most are classified incor-
rectly. Due to the imbalance in the dataset, the micro
F1-score would almost only reflect the performance of
the majority class and hence hide the poor performance
on the minority class. This reaffirms our choice for the
macro F1-score and relaxed F1-score discussed in 3.3.

5. https://github.com/Thijsvanede/DeepCASE/blob/sp/experiments/
baseline/results/deepcase after automatic.txt#L58

https://github.com/Thijsvanede/DeepCASE/blob/sp/experiments/baseline/results/deepcase_after_automatic.txt#L58
https://github.com/Thijsvanede/DeepCASE/blob/sp/experiments/baseline/results/deepcase_after_automatic.txt#L58

11

TABLE 4. OPTIMAL HYPERPARAMETERS FOR THE DIFFERENT DATASETS.

Hyperparameter Unfiltered High Label IR Medium Label IR Low Label IR

Context Length 15 10 20 15
Context Timeout 1 Day 1 Month 1 Day 1 Week
Context Builder Hidden Nodes 64 32 32 64
δ 0.25 0.5 0.35 0
τconfidence 0.05 0.05 0.05 0.05
ϵ 0.8 0.75 0.9 1
Minimum Cluster Size 50 5 5 5

TABLE 5. PROPERTIES OF THE SOC AND LASTLINE DATASETS.

Property SOC Dataset Lastline

Fired Alerts 24.4 million 10.5 million
Unique Rules 474 291
Collection Time 5.5 weeks 5 months
Distinct Hosts 1.3k 388k
Attacks 616 45.1k

This poor performance on the Incident alerts is despite
the copying of some Incident alerts from the test set
to the train set as described in Section 3.

The macro F1-score generally increases as label IR is
reduced. The high IR dataset has a mean macro F1-score
of 0.486, the medium IR dataset has a mean macro F1-
score of 0.802 and the low IR dataset has a mean macro
F1-score of 0.854. This is in-line with our findings from
Section 4.1 using the relaxed F1-score.

The macro F1-score for the low IR dataset for the hy-
perparameter control experiment described in Section C.1
of Appendix C is surprisingly not as high as its IR coun-
terpart, with a mean macro F1-score of 0.447. However, it
seems to be the case that the default hyperparameters only
work as expected for the unfiltered, high IR and medium
IR datasets, due to their scores being similar with their IR
experiment counterparts, with mean macro F1-scores of
0.499, 0.468 and 0.754 respectively. Since simply tuning
the hyperparameters seems to increase the macro F1-score
significantly for the low IR dataset, we can conclude
that hyperparameter optimization for each dataset can
significantly increase DeepCASE’s performance.

Appendix C.
Control experiments and datasets

This appendix describes how we control for various
experimental conditions such as hyperparameters (Sec-
tion C.1) and characteristics other than imbalance. Con-
cretely, we describe how we derive control datasets in
Section C.2 and make some comparisons between datasets
in Section C.3. The outcome of running DeepCASE
controlling for these other characteristics is discussed in
Section 4.1.

C.1. Hyperparameter control experiment

While not a property of the dataset, we did identify
different sets of hyperparameters (see Appendix A) for the
different datasets, which are also different compared to the
set of hyperparameters supplied by the original work [8].
To verify whether the optimization is performed correctly
and to assess the effect of hyperparameter tuning on Deep-
CASE, we perform a hyperparameter control experiment.
As such, we run the different datasets through DeepCASE
using the selection of hyperparameters as suggested by

the original work [8]. The effect of hyperparameter op-
timization and the outcome of this control experiment is
discussed in relation to the original work in Appendix B.

C.2. Control datasets

According to the methodology presented in Sec-
tion 3.2, we require control datasets to distinguish the
effects of different characteristics that may affect classifi-
cation performance. The characteristics we control for are:
dataset size, event imbalance, context heterogeneity, and
context builder input dimensionality. In the following, we
describe the derivation of four types of control datasets,
each intended to vary the aforementioned characteristics
w.r.t. the unfiltered dataset as depicted in Table 6. We
generate a control dataset of each type for every tuned
dataset to match some of its properties and vary other
characteristics. Runs on the control dataset use the same
hyperparameter values as used for the corresponding tuned
dataset.

C.2.1. Filtering Method. To derive this control dataset,
we filter out sequences until we match the dataset size of
the corresponding tuned dataset. Sequences are selected
at random with uniform probability of selecting a specific
sequence, with the exception that sequences with the
Incident label are never removed. As a result, the label
imbalance and dataset size are reduced from the unfiltered
dataset. By chance, all sequences associated with a rule
are randomly selected to be filtered for many infrequent
rules, reducing the dimensionality as a result. Contrary to
the tuned datasets, the event IR and heterogeneity remain
largely unaffected.

C.2.2. Dataset Size. To derive this control dataset, we
follow the same approach as for the Filtering Method
experiment but also aim to fix the label imbalance to
be equal to that of the unfiltered dataset. This allows
us to better understand the effects of dataset size on
classification performance. To this end, we perform an
additional step where we filter out sequences with the
Incident label uniformly at random to increase the
label IR until it matches that of the unfiltered dataset.
As a result, the dataset size is reduced from the unfiltered
dataset. Similarly to the Filtering Method control dataset,
the dimensionality is also reduced as a result. Contrary to
the tuned datasets, label IR, event IR, and heterogeneity
of these control datasets remain similar to those of the
unfiltered dataset.

C.2.3. Dimensionality. With context builder input dimen-
sionality, we refer to the amount of unique alerts in the
dataset. Filtering out a rule will remove all alerts generated
by the said rule from the dataset, which affects multiple

12

TABLE 6. COMPARISON OF EXPECTED EFFECTS OF TUNED DATASETS AND CONTROL DATASETS ON CONTROLLED CHARACTERISTICS WITH
RESPECT TO THE UNFILTERED DATASET.

Control Dataset Label Imbalance Event Imbalance Dataset Size Heterogeneity Dimensionality

SOC Ruleset Tuning - - - + -
Filtering Method - - -
Dataset Size - -
Dimensionality -
Heterogeneity - +

contexts in the data and reduces how many unique con-
texts can be constructed. To derive this control dataset,
we randomly filter out alerts with probabilities inversely
related to the frequency of alerts in the data. The proba-
bility of filtering out an alert i is shown in Equation (2),
where ac is the number of alerts in the dataset and ai is
the number of occurrences of the alert i. The probability
is normalized to sum to 1. The square is included to
encourage more aggressive, and hence faster, filtering.
These probabilities make it more likely that infrequent
alerts are filtered out and less likely that common alerts
are filtered. Note that sequences with the Incident label
are never removed. The dimensionality of the resulting
control dataset is reduced from the unfiltered dataset to
match that of the corresponding tuned dataset. Contrary
to the tuned datasets, label IR, event IR, dataset size, and
heterogeneity of these control datasets remain similar to
those of the unfiltered dataset.(

ac
ai

)2

(2)

C.2.4. Heterogeneity. Context heterogeneity refers to
how heterogeneous the contexts of a dataset are. The more
unique contexts a dataset contains, the more heteroge-
neous the dataset is. To assess the effect of heterogeneity,
we introduce another control dataset with the aim of only
varying the heterogeneity and not other characteristics
such as label imbalance, dimensionality, or dataset size.
As such, we randomly filter out common sequences until
we match the desired context heterogeneity of the cor-
responding tuned dataset. The probability of filtering out
a sequence i is shown in Equation (3), where sc is the
number of contexts in the dataset and si is the amount
of occurrences of context i. The probability is normalized
to sum to 1. The square is included to encourage more
aggressive, and hence faster, filtering. We perform upsam-
pling to match the dataset size of the unfiltered dataset.
The resulting control dataset has the same heterogeneity as
its tuned counterpart (hence increased from the unfiltered
dataset) but label imbalance and dimensionality similar to
that of the unfiltered dataset. The event IR is also reduced
from the unfiltered dataset as a result of the filtering.(

si
sc

)2

(3)

C.3. Filtering Method Control Dataset Compar-
ison with Tuned Datasets

Looking deeper into the Filtering Method (FM) control
experiment specifically and its comparison to the tuned
datasets which is summarized in Table 6, we see that all
controlled characteristics are significantly different com-
pared to the tuned datasets, except for the label IR. For

all FM control experiment datasets, the dimensionality,
and heterogeneity are lower than in the corresponding
tuned datasets. These properties seem to indicate that the
composition of the filtering method control dataset is more
homogeneous and less varied w.r.t. the event types than
the tuned datasets. This is also reflected in the number of
unique contexts, which are generally lower for the filtering
method experiment compared to the IR experiment. This
corresponds to the intuition that if you give a neural
network largely similar data, its ability to classify those
data correctly improves, hence explaining the significant
difference in performance.

Appendix D.
Expert labeling validation

Another expert (also recruited from the SOC, and
referred to as expert 2) independently assessed a random
selection of the same vectors of total attention per event,
the size of 11% of the total set in-line with the approach
described in Section 3.2.

When comparing the manually created vectors of total
attention per event, as shown in the form of a cumu-
lative distribution in Figure 4, we see that the experts
have created similar vectors for the majority of the set.
More specifically, for approximately 40% of the compared
vectors, the labeling of both experts are identical. More
than 60% of vectors have a cosine similarity higher than
0.8, suggesting high agreement between experts on what
constitutes correct labeling. Only about 20% of vectors
have a cosine similarity below 0.4, suggesting a low
agreement. Considering that expert 2 has independently
created similar vectors of total attention per event for the
majority of the randomly selected vectors, we conclude
that the ground truth created by expert 1 provides a good
baseline for which events in the input sequence should be
assigned attention.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Interesting Alert Vectors of Total Attention per Event

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

be
tw

ee
n

Ex
pe

rts
 1

 a
nd

 2

Figure 4. Cumulative Distribution of the Cosine Similarity of Expert
Created vectors of total attention per event between Expert 1 and 2

13

Appendix E.
Additional results

This appendix lists confusion matrices from our ex-
periments described in Section 3 and Section 4. Table 7
reports on the performance on the unfiltered and tuned
datasets. Table 8 reports on the performance on the filter-
ing method control datasets.

As explained in Section 4.1, the difference in perfor-
mance between runs of DeepCASE on the tuned datasets
and the Filtering Method (FM) control datasets is at-
tributed to the lower data complexity of the FM control
datasets. When comparing the aggregated classification
reports on the tuned datasets and FM control datasets,
shown in Table 7 and Table 8, we see this reflected
in the results. When comparing the performance on the
tuned datasets with the performance on the FM control
datasets, both the mean amount and the standard deviation
of Non-Incident alerts that are not classified are con-
sistently lower for the FM control datasets, with a mean of
5.0% versus 0.8% for the high IR dataset, 11.0% versus
1.1% for the medium IR dataset and 14.9% versus 1.3%
for the low IR dataset. Moreover, both the mean amount
and the standard deviation of misclassified Incident
alerts is also about the same, indicating that the number
of alerts investigated on the FM control datasets is smaller
than on the tuned datasets. Since the relaxed F1-score
punishes rejected alerts, the lower amount of rejected
Non-Incident alerts explains why the relaxed F1-score
is higher on the FM control datasets. The runs of Deep-
CASE on these control datasets show that DeepCASE
performs better on datasets that are largely repetitive in
nature.

14

TABLE 7. AGGREGATED CONFUSION MATRIX FOR THE UNFILTERED AND TUNED DATASETS.

Dataset Predicted Not Classified Non-Incident Incident
True µ σ µ σ µ σ

Unfiltered

Non-Incident 104133 5369 19294023 5235 183 159
0.5% 99.5% 0.0%

Incident 610 1 3 1 2 1
99.2% 0.5% 0.3%

High IR

Non-Incident 171200 19912 3202255 30326 21643 24987
5.1% 94.3% 0.6%

Incident 606 0 7 2 3 2
98.4% 1.1% 0.5%

Medium IR

Non-Incident 23855 699 193760 699 57 0
11.0% 89.0% 0.0%

Incident 281 30 0 0 334 30
45.7% 0.0% 54.3%

Low IR

Non-Incident 11642 275 66395 275 61 2
14.9% 85.0% 0.1%

Incident 174 11 0 0 441 11
28.3% 0.0% 71.7%

TABLE 8. AGGREGATED CONFUSION MATRIX FOR THE FILTERING METHOD (FM) CONTROL DATASETS.

Dataset Predicted Not Classified Non-Incident Incident
True µ σ µ σ µ σ

High FM

Non-Incident 27665 3407 3366150 3086 1407 2681
0.8% 99.1% 0.1%

Incident 608 2 4 1 2 2
99.0% 0.7% 0.3%

Medium FM

Non-Incident 2321 174 215473 174 1 0
1.1% 98.9% 0.0%

Incident 311 52 1 1 302 53
50.7% 0.1% 49.2%

Low FM

Non-Incident 1035 129 77160 182 28 56
1.3% 98.6% 0.1%

Incident 167 33 0 0 447 33
27.2% 0.0% 72.8%

	Introduction
	Background and Related Work
	Background on DeepCASE
	Related work

	Methodology
	Data Provisioning
	Experiment Design
	Metrics

	Results
	Classification performance
	Explainability

	Discussion
	Conclusion
	Data Availability
	Acknowledgment
	References
	Appendix A: Hyperparameter optimization
	Appendix B: Reproduction
	Appendix C: Control experiments and datasets
	Hyperparameter control experiment
	Control datasets
	Filtering Method
	Dataset Size
	Dimensionality
	Heterogeneity

	Filtering Method Control Dataset Comparison with Tuned Datasets

	Appendix D: Expert labeling validation
	Appendix E: Additional results

